Cho tứ diện \(ABCD\) có \(AB = AC\) và \(DB = DC\). Khẳng định nào sau đây đúng?
Cho tứ diện \(ABCD\) có \(AB = AC\) và \(DB = DC\). Khẳng định nào sau đây đúng?
Quảng cáo
Trả lời:

Gọi \(M\) là trung điểm \(BC\). Do tam giác \(1\) cân tại \(A\) và tam giác \(DBC\) cân tại \(D\) nên, có: \(\left\{ \begin{array}{l}BC \bot DM\\BC \bot AM\end{array} \right. \Rightarrow BC \bot AD\).
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- Sách - Sổ tay kiến thức trọng tâm Vật lí 11 VietJack - Sách 2025 theo chương trình mới cho 2k8 ( 45.000₫ )
- Trọng tâm Sử, Địa, GD KTPL 11 cho cả 3 bộ Kết nối, Chân trời, Cánh diều VietJack - Sách 2025 ( 38.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1
A. \(y' = {17^{ - x}}\ln 17\).
Lời giải
Áp dụng công thức: \({\left( {{a^u}} \right)^\prime } = u'.{a^u}\ln a\) ta có: \(y' = {\left( {{{17}^{ - x}}} \right)^\prime } = - {17^{ - x}}.\ln 17\).
Lời giải
Do \(I\) là trung điểm của \[SC\] và \(O\) là trung điểm \(AC\) nên \(IO{\rm{//}}SA\). Do \[SA \bot \left( {ABCD} \right)\] nên \[IO \bot \left( {ABCD} \right)\], hay khoảng cách từ \(I\) đến mặt phẳng \(\left( {ABCD} \right)\) bằng độ dài đoạn thẳng \(IO\).
![Cho hình chóp S.ABCD có đáy ABCD là hình vuông tâm O, [SA vuông góc ABCD]. Gọi I là trung điểm của SC. Khoảng cách từ I đến mặt phẳng (ABCD) bằng độ dài đoạn thẳng nào? (ảnh 1)](https://video.vietjack.com/upload2/quiz_source1/2025/12/blobid13-1765340267.png)
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 4
A. \[12{\rm{m/}}{{\rm{s}}^2}\].
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
Phần 2. Câu trắc nghiệm đúng sai.
Thí sinh trả lời từ câu 1 đến câu 4. Trong mỗi ý a), b), c), d) ở mỗi câu, thí sinh chọn đúng hoặc sai
Theo kết quả khảo sát ở một trường học về số học sinh yêu thích một loại nước giải khát \(A\) được cho bởi bảng sau:
Lớp
Thích
Không thích
Số học sinh nam
Số học sinh nữ
Số học sinh nam
Số học sinh nữ
11A
23
12
5
10
11B
25
15
6
12
11C
20
15
8
15
Phần 2. Câu trắc nghiệm đúng sai.
Thí sinh trả lời từ câu 1 đến câu 4. Trong mỗi ý a), b), c), d) ở mỗi câu, thí sinh chọn đúng hoặc sai
Theo kết quả khảo sát ở một trường học về số học sinh yêu thích một loại nước giải khát \(A\) được cho bởi bảng sau:
|
Lớp |
Thích |
Không thích |
||
|
Số học sinh nam |
Số học sinh nữ |
Số học sinh nam |
Số học sinh nữ |
|
|
11A |
23 |
12 |
5 |
10 |
|
11B |
25 |
15 |
6 |
12 |
|
11C |
20 |
15 |
8 |
15 |
a) Xác suất để chọn được một học sinh nam và một học sinh nữ ở khối lớp 11 mà thích uống nước giải khát \(A\) là \(\frac{{952}}{{4565}}\).
b) Xác suất để chọn được một học sinh nam ở lớp \(11\;A\) và một học sinh nam ở lớp \(11\;B\) không thích nước giải khát \(A\) là \(\frac{1}{{2739}}\).
c) Gọi \(A\) là biến cố: "Học sinh nam thích nước giải khát \(A\) ". Tính được \(P(A) = \frac{{42}}{{79}}\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
a) Khoảng cách từ \(C\) đến mặt phẳng \(\left( {SAB} \right)\) là đoạn \(BC\).
b) \[BC \bot \left( {SAB} \right)\].
c) Khoảng cách từ \(B\) đến mặt phẳng \(\left( {SAC} \right)\) là đoạn \(AB\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 7
a) \(f\left( x \right)\)liên tục tại \(x = - 1.\)
b) \(f\left( x \right)\)có đạo hàm tại \(x = - 1.\)
c) \(f\left( { - 1} \right) = 0.\)
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
