Câu hỏi:

10/12/2025 2 Lưu

Hai cầu thủ sút phạt đền. Mỗi người đá 1 lần với xác suất ghi bàn tương ứng là 0,8 và 0,7 . Tính xác suất để có ít nhất 1 cầu thủ ghi bàn.

A. \(P(X) = 0,42\).  

B. \(P(X) = 0,94\).  
C. \(P(X) = 0,234\). 
D. \(P(X) = 0,9\).

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Gọi \(A\) là biến cố "Cầu thủ thứ nhất ghi bàn"; \(B\) là biến cố "Cầu thủ thứ hai ghi bàn"; \(X\) là biến cố "Ít nhất một trong hai cầu thủ ghi bàn".

- Cầu thủ thứ nhất ghi bàn và cầu thủ hai không ghi bàn là \(A\bar B\), ta có:

\(P(A\bar B) = P(A) \cdot P(\bar B) = 0,8 \cdot 0,3 = 0,24.{\rm{ }}\)

- Cầu thủ thứ nhất không ghi bàn và cầu thủ hai ghi bàn là \(\bar AB\), ta có:

\(P(\bar AB) = P(\bar A) \cdot P(B) = 0,2 \cdot 0,7 = 0,14.{\rm{ }}\)

- Cả hai cầu thủ ghi bàn là \(AB\), ta có: \(P(AB) = P(A) \cdot P(B) = 0,8 \cdot 0,7 = 0,56\).

Biến cố để có ít nhất một cầu thủ ghi bàn là \(X = A\bar B \cup \bar AB \cup AB\).

Xác suất để có ít nhất một cầu thủ ghi bàn là:

\(P(X) = P(A\bar B) + P(\bar AB) + P(AB) = 0,24 + 0,14 + 0,56 = 0,94.\)

Chọn B.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

A. \(y' = {17^{ - x}}\ln 17\).

B. \(y' =  - x{.17^{ - x - 1}}\). 
C. \(y' =  - {17^{ - x}}\).     
D. \(y' =  - {17^{ - x}}\ln 17\).

Lời giải

Áp dụng công thức: \({\left( {{a^u}} \right)^\prime } = u'.{a^u}\ln a\) ta có: \(y' = {\left( {{{17}^{ - x}}} \right)^\prime } =  - {17^{ - x}}.\ln 17\).

Lời giải

Do \(I\) là trung điểm của \[SC\] và \(O\) là trung điểm \(AC\) nên \(IO{\rm{//}}SA\). Do \[SA \bot \left( {ABCD} \right)\] nên \[IO \bot \left( {ABCD} \right)\], hay khoảng cách từ \(I\) đến mặt phẳng \(\left( {ABCD} \right)\) bằng độ dài đoạn thẳng \(IO\).

Cho hình chóp S.ABCD có đáy ABCD là hình vuông tâm O, [SA vuông góc ABCD]. Gọi I là trung điểm của SC. Khoảng cách từ I đến mặt phẳng (ABCD) bằng độ dài đoạn thẳng nào? (ảnh 1)

Câu 3

Phần 2. Câu trắc nghiệm đúng sai.

Thí sinh trả lời từ câu 1 đến câu 4. Trong mỗi ý a), b), c), d) ở mỗi câu, thí sinh chọn đúng hoặc sai

Theo kết quả khảo sát ở một trường học về số học sinh yêu thích một loại nước giải khát \(A\) được cho bởi bảng sau:

Lớp

Thích

Không thích

 Số học sinh nam

 Số học sinh nữ

 Số học sinh nam

 Số học sinh nữ

 11A

 23

 12

 5

 10

 11B

 25

 15

 6

 12

 11C

 20

 15

 8

 15

a) Xác suất để chọn được một học sinh nam và một học sinh nữ ở khối lớp 11 mà thích uống nước giải khát \(A\) là \(\frac{{952}}{{4565}}\).

Đúng
Sai

b) Xác suất để chọn được một học sinh nam ở lớp \(11\;A\) và một học sinh nam ở lớp \(11\;B\) không thích nước giải khát \(A\) là \(\frac{1}{{2739}}\).

Đúng
Sai

c) Gọi \(A\) là biến cố: "Học sinh nam thích nước giải khát \(A\) ". Tính được \(P(A) = \frac{{42}}{{79}}\).

Đúng
Sai
d) Việc thích uống nước giải khát \(A\) có phụ thuộc vào giới tính.
Đúng
Sai

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

a) Khoảng cách từ \(C\) đến mặt phẳng \(\left( {SAB} \right)\) là đoạn \(BC\).

Đúng
Sai

b) \[BC \bot \left( {SAB} \right)\].

Đúng
Sai

c) Khoảng cách từ \(B\) đến mặt phẳng \(\left( {SAC} \right)\) là đoạn \(AB\).

Đúng
Sai
d) \[SB \bot BC\].
Đúng
Sai

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

a) \(f\left( x \right)\)liên tục tại \(x =  - 1.\)       

Đúng
Sai

b) \(f\left( x \right)\)có đạo hàm tại \(x =  - 1.\)

Đúng
Sai

c) \(f\left( { - 1} \right) = 0.\)  

Đúng
Sai
d) \(f\left( x \right)\)đạt giá trị nhỏ nhất tại \(x =  - 1.\)
Đúng
Sai

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP