Trong tin học, độ hiệu quả của một thuật toán tỉ lệ với tốc độ thực thi chương trình và được tính bởi \(E\left( n \right) = \frac{n}{{P\left( n \right)}}\), trong đó \(n\) là số lượng dữ liệu đầu vào và \(P\left( n \right)\) là độ phức tạp của thuật toán. Biết rằng một thuật toán có \(P\left( n \right) = {\log _2}n\) và khi \(n = 300\) thì để chạy nó, máy tính mất \(0,02\) giây. Hỏi khi \(n = 90000\) thì phải mất bao lâu để chạy chương trình tương ứng?
Trong tin học, độ hiệu quả của một thuật toán tỉ lệ với tốc độ thực thi chương trình và được tính bởi \(E\left( n \right) = \frac{n}{{P\left( n \right)}}\), trong đó \(n\) là số lượng dữ liệu đầu vào và \(P\left( n \right)\) là độ phức tạp của thuật toán. Biết rằng một thuật toán có \(P\left( n \right) = {\log _2}n\) và khi \(n = 300\) thì để chạy nó, máy tính mất \(0,02\) giây. Hỏi khi \(n = 90000\) thì phải mất bao lâu để chạy chương trình tương ứng?
Quảng cáo
Trả lời:
Trả lời: \(3\) giây.
Lời giải
Ta có \(E\left( {300} \right) = \frac{{300}}{{{{\log }_2}300}}\) máy tính phải chạy mất \(0,02\) giây.
Suy ra \(E\left( {90000} \right) = \frac{{90000}}{{{{\log }_2}90000}}\) máy tính phải mất thời gian để chạy là:
\(\frac{{E\left( {90000} \right).0,02}}{{E\left( {300} \right)}} = 3\) giây.
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- Trọng tâm Sử, Địa, GD KTPL 11 cho cả 3 bộ Kết nối, Chân trời, Cánh diều VietJack - Sách 2025 ( 38.000₫ )
- Sách - Sổ tay kiến thức trọng tâm Vật lí 11 VietJack - Sách 2025 theo chương trình mới cho 2k8 ( 45.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Số phần tử của tập hợp \(S\) là \(A_8^4 - A_7^3 = 1470\) (phần tử).
Số có 4 chữ số có dạng \(\overline {abcd} \).
Gọi \(A\) là biến cố "Số chọn được có dạng \(\overline {abc0} \) có tổng các chũ số chia hết cho 3 ", \(B\) là biến cố "Số chọn được có dạng \(\overline {abc5} \) có tổng các chữ số chia hết cho 3".
Khi đó biến cố "Số chọn được chia hết cho 15" là \(A \cup B\).
Nếu \(d = 0\), bộ 3 số \((a;b;c)\) có tổng \(a + b + c\) chia hết cho 3. Ta có các bộ số thoả mãn là: \((1;2;3),(1;2;6),(1;3;5),(1;4;7),(1;5;6),(2;3;4),(2;3;7),(2;4;6),(2;6;7)\), \((3;4;5),(3;5;7),(4;5;6),(5;6;7)\).
Từ các bộ số này có thể lập được \(13.3! = 78\) (số). Suy ra \(P(A) = \frac{{78}}{{1470}} = \frac{{13}}{{245}}\).
Nếu \(d = 5\), bộ 3 số \((a;b;c)\) có tổng \(a + b + c + 5\) chia hết cho 3, ta có các bộ thoả mãn là: \((0;1;3),(0;1;6),(0;2;5),(0;3;4),(0;3;7),(0;4;6),(1;2;7),(1;3;6),(1;4;5)\), \((2;3;5),(0;6;7),(1;5;7),(2;4;7),(2;5;6),(3;4;6),(3;6;7),(4;5;7)\).
Từ các bộ số này có thể lập được \(7.4 + 10.3! = 88\) (số). Suy ra \(P(B) = \frac{{88}}{{1470}} = \frac{{44}}{{735}}\).
Ta có: \(P(A \cup B) = P(A) + P(B) = \frac{{13}}{{245}} + \frac{{44}}{{735}} = \frac{{83}}{{735}}\).
Vậy xác suất để chọn được số chia hết cho 15 tử tập hợp \(S\) là \(\frac{{83}}{{735}}\).
Lời giải
Trả lời: \(0\).
Lời giải
\(y = {x^3} - m{x^2} + \left( {2m - 3} \right)x - 1 \Rightarrow y' = 3{x^2} - 2mx + 2m - 3\).
w Mọi tiếp tuyến của đồ thị hàm số \(y = {x^3} - m{x^2} + \left( {2m - 3} \right)x - 1\) đều có hệ số góc dương \( \Leftrightarrow y' = 3{x^2} - 2mx + 2m - 3 > 0\,,\,\forall x \in \mathbb{R} \Leftrightarrow \Delta ' = {m^2} - 3\left( {2m - 3} \right) < 0 \Leftrightarrow {m^2} - 6m + 9 < 0\,(VN)\).
Vậy không có giá trị của tham số \(m\) thỏa mãn yêu cầu bài toánLời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
a) Khoảng cách từ \(C\) đến mặt phẳng \(\left( {SAB} \right)\) là đoạn \(BC\).
b) \[BC \bot \left( {SAB} \right)\].
c) Khoảng cách từ \(B\) đến mặt phẳng \(\left( {SAC} \right)\) là đoạn \(AB\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 7
a) Đồ thị hai hàm số đối xứng nhau qua đường thẳng \(y = - x\).
b) Tập xác định của hai hàm số trên là \(\mathbb{R}\).
c) Đồ thị của hai hàm số cắt nhau tại đúng một điểm.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
