Câu hỏi:

10/12/2025 2 Lưu

Cho hình chóp \(S.ABCD\) có đáy \(ABCD\) là hình vuông cạnh \(a\), \(SD = \frac{{3a}}{2}\), hình chiếu vuông góc của \(S\) trên mặt phẳng \(\left( {ABCD} \right)\) là trung điểm của cạnh \(AB\). Tính theo \(a\) thể tích khối chóp \(S.ABCD\).

A. \(\frac{{{a^3}}}{2}\). 

B. \(\frac{{{a^3}}}{3}\). 
C. \(\frac{{{a^3}}}{4}\).
D. \(\frac{{2{a^3}}}{3}\).

Quảng cáo

Trả lời:

verified Giải bởi Vietjack
Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a, SD =3a/2, hình chiếu vuông góc của S trên mặt phẳng (ABCD) là trung điểm của cạnh AB. Tính theo a thể tích khối chóp S.ABCD. (ảnh 1)

Gọi \(H\) là trung điểm \(AB\)\( \Rightarrow \)\(SH \bot \left( {ABCD} \right)\).

Ta có: \(SH = \sqrt {S{D^2} - H{D^2}}  = \sqrt {S{D^2} - \left( {A{H^2} + A{D^2}} \right)}  = \sqrt {\frac{{9{a^2}}}{4} - \left( {\frac{{{a^2}}}{4} + {a^2}} \right)}  = a\).

Vậy: \({V_{S.ABCD}} = \frac{1}{3}{S_{ABCD}}.SH = \frac{{{a^3}}}{3}\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

A. \(y' = {17^{ - x}}\ln 17\).

B. \(y' =  - x{.17^{ - x - 1}}\). 
C. \(y' =  - {17^{ - x}}\).     
D. \(y' =  - {17^{ - x}}\ln 17\).

Lời giải

Áp dụng công thức: \({\left( {{a^u}} \right)^\prime } = u'.{a^u}\ln a\) ta có: \(y' = {\left( {{{17}^{ - x}}} \right)^\prime } =  - {17^{ - x}}.\ln 17\).

Lời giải

Do \(I\) là trung điểm của \[SC\] và \(O\) là trung điểm \(AC\) nên \(IO{\rm{//}}SA\). Do \[SA \bot \left( {ABCD} \right)\] nên \[IO \bot \left( {ABCD} \right)\], hay khoảng cách từ \(I\) đến mặt phẳng \(\left( {ABCD} \right)\) bằng độ dài đoạn thẳng \(IO\).

Cho hình chóp S.ABCD có đáy ABCD là hình vuông tâm O, [SA vuông góc ABCD]. Gọi I là trung điểm của SC. Khoảng cách từ I đến mặt phẳng (ABCD) bằng độ dài đoạn thẳng nào? (ảnh 1)

Câu 3

Phần 2. Câu trắc nghiệm đúng sai.

Thí sinh trả lời từ câu 1 đến câu 4. Trong mỗi ý a), b), c), d) ở mỗi câu, thí sinh chọn đúng hoặc sai

Theo kết quả khảo sát ở một trường học về số học sinh yêu thích một loại nước giải khát \(A\) được cho bởi bảng sau:

Lớp

Thích

Không thích

 Số học sinh nam

 Số học sinh nữ

 Số học sinh nam

 Số học sinh nữ

 11A

 23

 12

 5

 10

 11B

 25

 15

 6

 12

 11C

 20

 15

 8

 15

a) Xác suất để chọn được một học sinh nam và một học sinh nữ ở khối lớp 11 mà thích uống nước giải khát \(A\) là \(\frac{{952}}{{4565}}\).

Đúng
Sai

b) Xác suất để chọn được một học sinh nam ở lớp \(11\;A\) và một học sinh nam ở lớp \(11\;B\) không thích nước giải khát \(A\) là \(\frac{1}{{2739}}\).

Đúng
Sai

c) Gọi \(A\) là biến cố: "Học sinh nam thích nước giải khát \(A\) ". Tính được \(P(A) = \frac{{42}}{{79}}\).

Đúng
Sai
d) Việc thích uống nước giải khát \(A\) có phụ thuộc vào giới tính.
Đúng
Sai

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

a) Khoảng cách từ \(C\) đến mặt phẳng \(\left( {SAB} \right)\) là đoạn \(BC\).

Đúng
Sai

b) \[BC \bot \left( {SAB} \right)\].

Đúng
Sai

c) Khoảng cách từ \(B\) đến mặt phẳng \(\left( {SAC} \right)\) là đoạn \(AB\).

Đúng
Sai
d) \[SB \bot BC\].
Đúng
Sai

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

a) \(f\left( x \right)\)liên tục tại \(x =  - 1.\)       

Đúng
Sai

b) \(f\left( x \right)\)có đạo hàm tại \(x =  - 1.\)

Đúng
Sai

c) \(f\left( { - 1} \right) = 0.\)  

Đúng
Sai
d) \(f\left( x \right)\)đạt giá trị nhỏ nhất tại \(x =  - 1.\)
Đúng
Sai

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP