Câu hỏi:

10/12/2025 22 Lưu

Cho bất phương trình \({\left( {\frac{1}{6}} \right)^{x + 2}} \le {\left( {\frac{1}{{36}}} \right)^{ - x}}\), có tập nghiệm là \(S = \left[ {a;b} \right)\). Khi đó:

a) Bất phương trình có chung tập nghiệm với \({6^{ - x - 2}} \le {6^{ - 2x}}\)

Đúng
Sai

b) \(\mathop {\lim }\limits_{x \to b} \left( {3{x^2} + 2} \right) = b\)

Đúng
Sai

c) \(\left[ {a;b} \right)\backslash \left( {3; + \infty } \right) = \left[ { - \frac{2}{3};3} \right]\)

Đúng
Sai
d) \(\mathop {\lim }\limits_{x \to a} \left( {3{x^2} + 2} \right) = \frac{{10}}{3}\)
Đúng
Sai

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

a) Sai

b) Đúng

c) Đúng

d) Đúng

 \({\left( {\frac{1}{6}} \right)^{x + 2}} \le {\left( {\frac{1}{{36}}} \right)^{ - x}} \Leftrightarrow {6^{ - x - 2}} \le {6^{2x}} \Leftrightarrow  - x - 2 \le 2x \Leftrightarrow x \ge  - \frac{2}{3}\) (do \(6 > 1\)).

Một cách giải khác:

\({\left( {\frac{1}{6}} \right)^{x + 2}} \le {\left( {\frac{1}{{36}}} \right)^{ - x}} \Leftrightarrow {\left( {\frac{1}{6}} \right)^{x + 2}} \le {\left( {\frac{1}{6}} \right)^{ - 2x}} \Leftrightarrow x + 2 \ge  - 2x \Leftrightarrow x \ge  - \frac{2}{3}\) (do. \(0 < \frac{1}{6} < 1\))

Vậy nghiệm của bất phương trình là \(x \ge  - \frac{2}{3}\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Trả lời: \(6\,{\rm{m/}}{{\rm{s}}^{\rm{2}}}\).   

Lời giải

Ta có \(v = f'\left( t \right) = 3{t^2} - 6t + 4\) và \(a = f''\left( t \right) = 6t - 6\).

Gia tốc của chất điểm tại thời điểm \(t = 2\) (s) có giá trị là \(f''\left( 2 \right) = 6.2 - 6 = 6\,{\rm{m/}}{{\rm{s}}^{\rm{2}}}\).

Lời giải

Trả lời: \(7\) phút.         

Lời giải

Theo giả thiết: \(S\left( 3 \right) = 625\) (nghìn con) \( \Rightarrow s\left( 0 \right){.2^3} = 625 \Rightarrow S\left( 0 \right) = \frac{{625}}{8}\).

Thời điểm số lượng vi khuẩn \(A\) là \(10\) triệu con thì \(S\left( t \right) = 10000 \Leftrightarrow \frac{{625}}{8}{.2^t} = 10000\)

\( \Leftrightarrow t = 7\) phút.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

Phần 3. Câu trả lời ngắn.

Thí sinh trả lời đáp án từ câu 1 đến câu 6.

An gieo một con xúc xắc cân đối và đồng chất 4 lần. Tính xác suất để có 3 lần gieo mà số chấm xuất hiện trên xúc xắc là ba số liên tiếp.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP