Cho hình lăng trụ đều \(ABC \cdot {A^\prime }{B^\prime }{C^\prime }\) có đáy cạnh \(a\), góc giữa đường thẳng \({A^\prime }B\) và mặt phẳng \((ABC)\) là \({60^^\circ }\). Tính góc giữa đường thẳng \({C^\prime }A\) và mặt phẳng \(\left( {A{A^\prime }{B^\prime }B} \right)\)?
Cho hình lăng trụ đều \(ABC \cdot {A^\prime }{B^\prime }{C^\prime }\) có đáy cạnh \(a\), góc giữa đường thẳng \({A^\prime }B\) và mặt phẳng \((ABC)\) là \({60^^\circ }\). Tính góc giữa đường thẳng \({C^\prime }A\) và mặt phẳng \(\left( {A{A^\prime }{B^\prime }B} \right)\)?
Quảng cáo
Trả lời:
Trả lời: \( \approx {25,7^0}\)
Lời giải
Kẻ \({C^\prime }I \bot {A^\prime }{B^\prime }\)
Ta có: \({C^\prime }I \bot {A^\prime }A \Rightarrow {C^\prime }I \bot \left( {A{A^\prime }{B^\prime }B} \right)\) tại \(I\) và \({C^\prime }A\) cắt mp\(\left( {A{A^\prime }{B^\prime }B} \right)\) tại \(A\).
\( \Rightarrow AI\) là hình chiếu của \({C^\prime }A\) trên mp\(\left( {A{A^\prime }{B^\prime }B} \right)\)
\( \Rightarrow \left( {{C^\prime }A,\left( {A{A^\prime }{B^\prime }B} \right)} \right) = \left( {{C^\prime }A,AI} \right) = \widehat {{C^\prime }AI}\)
Ta có: \({A^\prime }A = AB \cdot \tan {60^^\circ } = \sqrt 3 a\)
\(AI = \sqrt {{A^\prime }{A^2} + {A^\prime }{I^2}} = \sqrt {{{(a\sqrt 3 )}^2} + {{\left( {\frac{a}{2}} \right)}^2}} = \frac{{\sqrt {13} }}{2}a\)
Xét \(\Delta {C^\prime }AI\) vuông tại \(I:\tan \widehat {{C^\prime }AI} = \frac{{{C^\prime }I}}{{AI}} = \frac{{\frac{{a\sqrt 3 }}{2}}}{{\frac{{\sqrt {13} a}}{2}}} = \frac{{\sqrt {39} }}{{13}} \Rightarrow \widehat {{C^\prime }AI} \approx {25,7^0}\)
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- Sách - Sổ tay kiến thức trọng tâm Vật lí 11 VietJack - Sách 2025 theo chương trình mới cho 2k8 ( 45.000₫ )
- Trọng tâm Sử, Địa, GD KTPL 11 cho cả 3 bộ Kết nối, Chân trời, Cánh diều VietJack - Sách 2025 ( 38.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1
A. \[P = {x^{\frac{1}{{12}}}}\].
Lời giải
\(P = {x^{\frac{1}{3}}}.\sqrt[4]{x} = {x^{\frac{1}{3}}}.{x^{\frac{1}{4}}} = {x^{\frac{7}{{12}}}}\).
Câu 2
A. Hai đường thẳng cùng vuông góc với một đường thẳng thứ ba thì song song với nhau.
B. Một đường thẳng vuông góc với một trong hai đường thẳng song song thì vuông góc với đường thẳng còn lại.
C. Hai đường thẳng cùng vuông góc với một đường thẳng thứ ba thì vuông góc với nhau.
Lời giải
Một đường thẳng vuông góc với một trong hai đường thẳng song song thì vuông góc với đường thẳng còn lại.
Câu 3
A. Hai biến cố \(A\) và \(B\) là hai biến cố độc lập
B. Hai biến cố \(A\) và \(B\) là hai biến cố đối nhau
C. Hợp của hai biến cố \(A\) và \(B\) bằng không gian mẫu
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 4
A. \(P(X) = 0,306\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
A. \[y = {\log _2}x + 1\].
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
A. \({45^{\rm{o}}}\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 7
A. Mặt phẳng \(\left( {SBD} \right)\) vuông góc với mặt phẳng \(\left( {ABCD} \right)\).
B. Mặt phẳng \(\left( {SBC} \right)\) vuông góc với mặt phẳng \(\left( {ABCD} \right)\).
C. Mặt phẳng \(\left( {SAD} \right)\) vuông góc với mặt phẳng \(\left( {ABCD} \right)\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
