Cho hình lăng trụ đều \(ABC \cdot {A^\prime }{B^\prime }{C^\prime }\) có đáy cạnh \(a\), góc giữa đường thẳng \({A^\prime }B\) và mặt phẳng \((ABC)\) là \({60^^\circ }\). Tính góc giữa đường thẳng \({C^\prime }A\) và mặt phẳng \(\left( {A{A^\prime }{B^\prime }B} \right)\)?
Cho hình lăng trụ đều \(ABC \cdot {A^\prime }{B^\prime }{C^\prime }\) có đáy cạnh \(a\), góc giữa đường thẳng \({A^\prime }B\) và mặt phẳng \((ABC)\) là \({60^^\circ }\). Tính góc giữa đường thẳng \({C^\prime }A\) và mặt phẳng \(\left( {A{A^\prime }{B^\prime }B} \right)\)?
Quảng cáo
Trả lời:
Trả lời: \( \approx {25,7^0}\)
Lời giải
Kẻ \({C^\prime }I \bot {A^\prime }{B^\prime }\)
Ta có: \({C^\prime }I \bot {A^\prime }A \Rightarrow {C^\prime }I \bot \left( {A{A^\prime }{B^\prime }B} \right)\) tại \(I\) và \({C^\prime }A\) cắt mp\(\left( {A{A^\prime }{B^\prime }B} \right)\) tại \(A\).
\( \Rightarrow AI\) là hình chiếu của \({C^\prime }A\) trên mp\(\left( {A{A^\prime }{B^\prime }B} \right)\)
\( \Rightarrow \left( {{C^\prime }A,\left( {A{A^\prime }{B^\prime }B} \right)} \right) = \left( {{C^\prime }A,AI} \right) = \widehat {{C^\prime }AI}\)
Ta có: \({A^\prime }A = AB \cdot \tan {60^^\circ } = \sqrt 3 a\)
\(AI = \sqrt {{A^\prime }{A^2} + {A^\prime }{I^2}} = \sqrt {{{(a\sqrt 3 )}^2} + {{\left( {\frac{a}{2}} \right)}^2}} = \frac{{\sqrt {13} }}{2}a\)
Xét \(\Delta {C^\prime }AI\) vuông tại \(I:\tan \widehat {{C^\prime }AI} = \frac{{{C^\prime }I}}{{AI}} = \frac{{\frac{{a\sqrt 3 }}{2}}}{{\frac{{\sqrt {13} a}}{2}}} = \frac{{\sqrt {39} }}{{13}} \Rightarrow \widehat {{C^\prime }AI} \approx {25,7^0}\)
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- Trọng tâm Hóa học 11 dùng cho cả 3 bộ sách Kết nối, Cánh diều, Chân trời sáng tạo VietJack - Sách 2025 ( 58.000₫ )
- Trọng tâm Sử, Địa, GD KTPL 11 cho cả 3 bộ Kết nối, Chân trời, Cánh diều VietJack - Sách 2025 ( 38.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Trả lời: \(6\,{\rm{m/}}{{\rm{s}}^{\rm{2}}}\).
Lời giải
Ta có \(v = f'\left( t \right) = 3{t^2} - 6t + 4\) và \(a = f''\left( t \right) = 6t - 6\).
Gia tốc của chất điểm tại thời điểm \(t = 2\) (s) có giá trị là \(f''\left( 2 \right) = 6.2 - 6 = 6\,{\rm{m/}}{{\rm{s}}^{\rm{2}}}\).
Lời giải
Trả lời: \(7\) phút.
Lời giải
Theo giả thiết: \(S\left( 3 \right) = 625\) (nghìn con) \( \Rightarrow s\left( 0 \right){.2^3} = 625 \Rightarrow S\left( 0 \right) = \frac{{625}}{8}\).
Thời điểm số lượng vi khuẩn \(A\) là \(10\) triệu con thì \(S\left( t \right) = 10000 \Leftrightarrow \frac{{625}}{8}{.2^t} = 10000\)
\( \Leftrightarrow t = 7\) phút.
Câu 3
A. \[\sqrt {10} \].
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
A. \[P = {x^{\frac{1}{{12}}}}\].
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.