Câu hỏi:

10/12/2025 73 Lưu

Cho hình lăng trụ đều \(ABC \cdot {A^\prime }{B^\prime }{C^\prime }\) có đáy cạnh \(a\), góc giữa đường thẳng \({A^\prime }B\) và mặt phẳng \((ABC)\) là \({60^^\circ }\). Tính góc giữa đường thẳng \({C^\prime }A\) và mặt phẳng \(\left( {A{A^\prime }{B^\prime }B} \right)\)?

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Trả lời: \( \approx {25,7^0}\)

Lời giải

Cho hình lăng trụ đều ABC . A'B'C' có đáy cạnh a, góc giữa đường thẳng A'B và mặt phẳng (ABC) là 60 độ. Tính góc giữa đường thẳng C'A và mặt phẳng (AA'B'B)? (ảnh 1)

Kẻ \({C^\prime }I \bot {A^\prime }{B^\prime }\)

Ta có: \({C^\prime }I \bot {A^\prime }A \Rightarrow {C^\prime }I \bot \left( {A{A^\prime }{B^\prime }B} \right)\) tại \(I\) và \({C^\prime }A\) cắt mp\(\left( {A{A^\prime }{B^\prime }B} \right)\) tại \(A\).

\( \Rightarrow AI\) là hình chiếu của \({C^\prime }A\) trên mp\(\left( {A{A^\prime }{B^\prime }B} \right)\)

\( \Rightarrow \left( {{C^\prime }A,\left( {A{A^\prime }{B^\prime }B} \right)} \right) = \left( {{C^\prime }A,AI} \right) = \widehat {{C^\prime }AI}\)

Ta có: \({A^\prime }A = AB \cdot \tan {60^^\circ } = \sqrt 3 a\)

\(AI = \sqrt {{A^\prime }{A^2} + {A^\prime }{I^2}}  = \sqrt {{{(a\sqrt 3 )}^2} + {{\left( {\frac{a}{2}} \right)}^2}}  = \frac{{\sqrt {13} }}{2}a\)

Xét \(\Delta {C^\prime }AI\) vuông tại \(I:\tan \widehat {{C^\prime }AI} = \frac{{{C^\prime }I}}{{AI}} = \frac{{\frac{{a\sqrt 3 }}{2}}}{{\frac{{\sqrt {13} a}}{2}}} = \frac{{\sqrt {39} }}{{13}} \Rightarrow \widehat {{C^\prime }AI} \approx {25,7^0}\)

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

a) Bất phương trình có chung tập nghiệm với \({6^{ - x - 2}} \le {6^{ - 2x}}\)

Đúng
Sai

b) \(\mathop {\lim }\limits_{x \to b} \left( {3{x^2} + 2} \right) = b\)

Đúng
Sai

c) \(\left[ {a;b} \right)\backslash \left( {3; + \infty } \right) = \left[ { - \frac{2}{3};3} \right]\)

Đúng
Sai
d) \(\mathop {\lim }\limits_{x \to a} \left( {3{x^2} + 2} \right) = \frac{{10}}{3}\)
Đúng
Sai

Lời giải

a) Sai

b) Đúng

c) Đúng

d) Đúng

 \({\left( {\frac{1}{6}} \right)^{x + 2}} \le {\left( {\frac{1}{{36}}} \right)^{ - x}} \Leftrightarrow {6^{ - x - 2}} \le {6^{2x}} \Leftrightarrow  - x - 2 \le 2x \Leftrightarrow x \ge  - \frac{2}{3}\) (do \(6 > 1\)).

Một cách giải khác:

\({\left( {\frac{1}{6}} \right)^{x + 2}} \le {\left( {\frac{1}{{36}}} \right)^{ - x}} \Leftrightarrow {\left( {\frac{1}{6}} \right)^{x + 2}} \le {\left( {\frac{1}{6}} \right)^{ - 2x}} \Leftrightarrow x + 2 \ge  - 2x \Leftrightarrow x \ge  - \frac{2}{3}\) (do. \(0 < \frac{1}{6} < 1\))

Vậy nghiệm của bất phương trình là \(x \ge  - \frac{2}{3}\).

Lời giải

Trả lời: \(\frac{7}{{12}}{a^3}\)

Lời giải

Cho hình chóp đều S.ABCD có đáy cạnh a và chiều cao SO = 2a. Gọi M,N,P, Q lần lượt là trung điểm của SA,SB,SC,SD. Tính thể tích khối chóp cụt đều ABCD.MNPQ. (ảnh 1)

\(\begin{array}{l}V = \frac{1}{3}\left( {{S_{ABCD}} + {S_{MNPQ}} + \sqrt {{S_{ABCD}} \cdot {S_{MNPQ}}} } \right) \cdot O{O^\prime }\\{S_{ABCD}} = {a^2}\\{S_{MNPQ}} = {\left( {\frac{1}{2}a} \right)^2} = \frac{1}{4}{a^2}\\ \Rightarrow V = \frac{1}{3}\left( {{a^2} + \frac{1}{4}{a^2} + \sqrt {{a^2} \cdot \frac{1}{4}{a^2}} } \right) \cdot a = \frac{7}{{12}}{a^3}\end{array}\)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

Phần 3. Câu trả lời ngắn.

Thí sinh trả lời đáp án từ câu 1 đến câu 6.

An gieo một con xúc xắc cân đối và đồng chất 4 lần. Tính xác suất để có 3 lần gieo mà số chấm xuất hiện trên xúc xắc là ba số liên tiếp.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP