Câu hỏi:

10/12/2025 56 Lưu

Cho hình chóp \(S.ABC\) có đáy \(ABC\) là tam giác đều, cạnh bên \(SA\) vuông góc với đáy. Gọi \(M\), \(N\) lần lượt là trung điểm của \(AB\) và \(SB\). Mệnh đề nào dưới đây là mệnh đề sai?

A. \(AN \bot BC\).          

B. \(CM \bot SB\).       
C. \(CM \bot AN\).      
D. \(MN \bot MC\).

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Do tam giác \(ABC\) đều nên \(CM \bot AB\), vì \(SA \bot \left( {ABC} \right)\) nên \(SA \bot CM\) \( \Rightarrow CM \bot \left( {SAB} \right)\) \( \Rightarrow CM \bot SB\), \(CM \bot AN\) nên B, C đúng.

Do \(MN{\rm{//}}SA\) nên \(MN \bot \left( {ABC} \right)\) \( \Rightarrow MN \bot MC\) nên D đúng.

Vậy A sai.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Trả lời: \( \approx {73,4^^\circ }\)

 Cho hình hộp chữ nhật ABCD .A'B'C'D' có AB = a,AD = 2a,AA' = 3a. Tính góc phẳng nhị diện [A',BD,A]? (ảnh 1)

Kẻ \(AI \bot BD\). Mà \(BD \bot {A^\prime }A \Rightarrow BD \bot \left( {A{A^\prime }I} \right)\)

\(\begin{array}{l}{\rm{ Ta c\'o : }}\left\{ {\begin{array}{*{20}{l}}{\left( {{A^\prime }BD} \right) \cap (ABD) = BD}\\{{\mathop{\rm Trong}\nolimits} (ABD),AI \bot BD}\\{{\mathop{\rm Trong}\nolimits} \left( {{A^\prime }BD} \right),{A^\prime }I \bot BD}\end{array}} \right.\\ \Rightarrow \left[ {{A^\prime },BD,A} \right] = \widehat {{A^\prime }IA}\end{array}\)

Ta có: \(AI = \frac{1}{{\sqrt {\frac{1}{{A{B^2}}} + \frac{1}{{A{D^2}}}} }} = \frac{1}{{\sqrt {\frac{1}{{{a^2}}} + \frac{1}{{{{(2a)}^2}}}} }} = \frac{{2\sqrt 5 }}{5}a\)

Xét \(\Delta A{A^\prime }I\) vuông tại \(A:\tan \widehat {{A^\prime }IA} = \frac{{{A^\prime }A}}{{AI}} = \frac{{a\sqrt 3 }}{{\frac{{2\sqrt 5 }}{5}a}} = \frac{{3\sqrt 5 }}{2} \Rightarrow \widehat {{A^\prime }IA} \approx {73,4^^\circ }\)

Lời giải

Trả lời: \(\frac{{\sqrt {15} }}{{15}}a\)

Cho hình chóp S.ABC có đáy là tam giác đều cạnh a, SA vuông góc ABC và SB = 2a. Gọi G là trọng tâm tam giác ABC. Tính khoảng cách từ G đến mặt phẳng SBC. (ảnh 1)

Kẻ \(AI \bot BC\), kẻ \(AH \bot SI\) tại \(H\)

Ta có: \(\left\{ {\begin{array}{*{20}{l}}{BC \bot SA}\\{BC \bot AI}\end{array} \Rightarrow BC \bot (SAI) \Rightarrow BC \bot AH} \right.\).

Ta lại có: \(AH \bot SI \Rightarrow AH \bot (SBC) \Rightarrow d(A,(SBC)) = AH\)

Ta có: \(SA = \sqrt {S{B^2} - B{A^2}}  = \sqrt {{{(2a)}^2} - {a^2}}  = \sqrt 3 a\)

Ta có: \(AH = \frac{1}{{\sqrt {\frac{1}{{S{A^2}}} + \frac{1}{{A{I^2}}}} }} = \frac{1}{{\sqrt {\frac{1}{{{{\left( {\sqrt 3 a} \right)}^2}}} + \frac{1}{{{{\left( {\frac{{a\sqrt 3 }}{2}} \right)}^2}}}} }} = \frac{{\sqrt {15} }}{5}a\)

Vậy \(d(A,(SBC)) = \frac{{\sqrt {15} }}{5}a\).

Ta có: \(GA\) cắt \[\left( {SBC} \right)\] tại \[I\]

\( \Rightarrow \frac{{d(G,(SBC))}}{{d(A,(SBC))}} = \frac{{GI}}{{AI}} = \frac{1}{3} \Rightarrow d(G,(SBC)) = \frac{1}{3}d(A,(SBC)) = \frac{{\sqrt {15} }}{{15}}a.\)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP