Câu hỏi:

10/12/2025 58 Lưu

Cho hình lập phương \(ABCD.A'B'C'D'\) có cạnh bằng \(a\). Gọi \(M\) là trung điểm cạnh \(C'D'\) (tham khảo hình vẽ). Khoảng cách giữa hai đường thẳng \(AA'\) và \(CM\) bằng

Cho hình lập phương ABCD.A'B'C'D' có cạnh bằng a. Gọi M là trung điểm cạnh C'D' (tham khảo hình vẽ). Khoảng cách giữa hai đường thẳng AA' và CM bằng (ảnh 1)

A. \(a\sqrt 2 \).    

B. \(a\).
C. \(\frac{{a\sqrt 2 }}{3}\).     
D. \(a\sqrt 3 \).

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Ta có \(AA'\,{\rm{// }}\left( {DD'C'C} \right) \supset CM\)\( \Rightarrow d\left( {AA',CM} \right) = d\left( {AA',\left( {DD'C'C} \right)} \right) = AD = a\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Trả lời: \( \approx {73,4^^\circ }\)

 Cho hình hộp chữ nhật ABCD .A'B'C'D' có AB = a,AD = 2a,AA' = 3a. Tính góc phẳng nhị diện [A',BD,A]? (ảnh 1)

Kẻ \(AI \bot BD\). Mà \(BD \bot {A^\prime }A \Rightarrow BD \bot \left( {A{A^\prime }I} \right)\)

\(\begin{array}{l}{\rm{ Ta c\'o : }}\left\{ {\begin{array}{*{20}{l}}{\left( {{A^\prime }BD} \right) \cap (ABD) = BD}\\{{\mathop{\rm Trong}\nolimits} (ABD),AI \bot BD}\\{{\mathop{\rm Trong}\nolimits} \left( {{A^\prime }BD} \right),{A^\prime }I \bot BD}\end{array}} \right.\\ \Rightarrow \left[ {{A^\prime },BD,A} \right] = \widehat {{A^\prime }IA}\end{array}\)

Ta có: \(AI = \frac{1}{{\sqrt {\frac{1}{{A{B^2}}} + \frac{1}{{A{D^2}}}} }} = \frac{1}{{\sqrt {\frac{1}{{{a^2}}} + \frac{1}{{{{(2a)}^2}}}} }} = \frac{{2\sqrt 5 }}{5}a\)

Xét \(\Delta A{A^\prime }I\) vuông tại \(A:\tan \widehat {{A^\prime }IA} = \frac{{{A^\prime }A}}{{AI}} = \frac{{a\sqrt 3 }}{{\frac{{2\sqrt 5 }}{5}a}} = \frac{{3\sqrt 5 }}{2} \Rightarrow \widehat {{A^\prime }IA} \approx {73,4^^\circ }\)

Lời giải

Trả lời: \(\frac{{\sqrt {15} }}{{15}}a\)

Cho hình chóp S.ABC có đáy là tam giác đều cạnh a, SA vuông góc ABC và SB = 2a. Gọi G là trọng tâm tam giác ABC. Tính khoảng cách từ G đến mặt phẳng SBC. (ảnh 1)

Kẻ \(AI \bot BC\), kẻ \(AH \bot SI\) tại \(H\)

Ta có: \(\left\{ {\begin{array}{*{20}{l}}{BC \bot SA}\\{BC \bot AI}\end{array} \Rightarrow BC \bot (SAI) \Rightarrow BC \bot AH} \right.\).

Ta lại có: \(AH \bot SI \Rightarrow AH \bot (SBC) \Rightarrow d(A,(SBC)) = AH\)

Ta có: \(SA = \sqrt {S{B^2} - B{A^2}}  = \sqrt {{{(2a)}^2} - {a^2}}  = \sqrt 3 a\)

Ta có: \(AH = \frac{1}{{\sqrt {\frac{1}{{S{A^2}}} + \frac{1}{{A{I^2}}}} }} = \frac{1}{{\sqrt {\frac{1}{{{{\left( {\sqrt 3 a} \right)}^2}}} + \frac{1}{{{{\left( {\frac{{a\sqrt 3 }}{2}} \right)}^2}}}} }} = \frac{{\sqrt {15} }}{5}a\)

Vậy \(d(A,(SBC)) = \frac{{\sqrt {15} }}{5}a\).

Ta có: \(GA\) cắt \[\left( {SBC} \right)\] tại \[I\]

\( \Rightarrow \frac{{d(G,(SBC))}}{{d(A,(SBC))}} = \frac{{GI}}{{AI}} = \frac{1}{3} \Rightarrow d(G,(SBC)) = \frac{1}{3}d(A,(SBC)) = \frac{{\sqrt {15} }}{{15}}a.\)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP