Lạm phát là sự tăng mức giá chung một cách liên tục của hàng hoá và dịch vụ theo thời gian, tức là sự mất giá trị của một loại tiền tệ nào đó. Chẳng hạn, nếu lạm phát là \(5\% \) một năm thì sức mua của 1 triệu đồng sau một năm chỉ còn là 950 nghìn đồng (vì đã giảm mất \(5\% \) của 1 triệu đồng, tức là 50000 đồng). Nói chung, nếu tỉ lệ lạm phát trung bình là \(r\% \) một năm thì tổng số tiền \(P\) ban đầu, sau \(n\) năm số tiền đó chỉ còn giá trị là: \(A = P{\left( {1 - \frac{r}{{100}}} \right)^n}\)
Lạm phát là sự tăng mức giá chung một cách liên tục của hàng hoá và dịch vụ theo thời gian, tức là sự mất giá trị của một loại tiền tệ nào đó. Chẳng hạn, nếu lạm phát là \(5\% \) một năm thì sức mua của 1 triệu đồng sau một năm chỉ còn là 950 nghìn đồng (vì đã giảm mất \(5\% \) của 1 triệu đồng, tức là 50000 đồng). Nói chung, nếu tỉ lệ lạm phát trung bình là \(r\% \) một năm thì tổng số tiền \(P\) ban đầu, sau \(n\) năm số tiền đó chỉ còn giá trị là: \(A = P{\left( {1 - \frac{r}{{100}}} \right)^n}\)
a) Nếu tỉ lệ lạm phát là \(7\% \) một năm thì sức mua của 100 triệu đồng sau hai năm sẽ còn lại 86490000 đồng.
b) Nếu tỉ lệ lạm phát là \(7\% \) một năm thì sức mua của 100 triệu đồng sau hai năm sẽ còn lại 96490000 đồng.
c) Nếu sức mua của 100 triệu đồng sau ba năm chỉ còn lại 80 triệu đồng thì tỉ lệ lạm phát trung bình của ba năm đó là \(9,17\% \) (làm tròn kết quả đến hàng phần trăm)?
Quảng cáo
Trả lời:
|
a) Đúng |
b) Sai |
c) Sai |
d) Sai |
a) b) Giả thiết cho \(P = 100\) triệu đồng, \(r\% = 7\% ,n = 2\) năm.
Ta có: \(A = {100.10^6}{\left( {1 - \frac{7}{{100}}} \right)^2} = 86490000\) đồng.
Vậy sau hai năm sức mua còn lại của 100000000 là 86490000 đồng.
c) Giả thiết cho \(P = 100\) triệu đồng, \(A = 80\) triệu đồng, \(n = 3\) năm.
Ta có: \(80 = 100{\left( {1 - \frac{r}{{100}}} \right)^3} \Leftrightarrow 1 - \frac{r}{{100}} = \sqrt[3]{{\frac{4}{5}}} \Leftrightarrow r \approx 7,17\).
Vậy tỉ lệ lạm phát trung bình của ba năm là \(r\% \approx 7,17\% \).
d) Giả thiết cho \(P = X\) triệu đồng, \(A = \frac{X}{2}\) triệu đồng, \(r\% = 6\% \).
Ta có: \(\frac{X}{2} = X{\left( {1 - \frac{6}{{100}}} \right)^n} \Leftrightarrow {(0,94)^n} = \frac{1}{2} \Leftrightarrow n \approx 11,2\) (năm).
Vậy sau khoảng 12 năm sức mua của số tiền còn lại là một nửa.
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- Sách - Sổ tay kiến thức trọng tâm Vật lí 11 VietJack - Sách 2025 theo chương trình mới cho 2k8 ( 45.000₫ )
- Trọng tâm Sử, Địa, GD KTPL 11 cho cả 3 bộ Kết nối, Chân trời, Cánh diều VietJack - Sách 2025 ( 38.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Trả lời: \( \approx {73,4^^\circ }\)
Kẻ \(AI \bot BD\). Mà \(BD \bot {A^\prime }A \Rightarrow BD \bot \left( {A{A^\prime }I} \right)\)
\(\begin{array}{l}{\rm{ Ta c\'o : }}\left\{ {\begin{array}{*{20}{l}}{\left( {{A^\prime }BD} \right) \cap (ABD) = BD}\\{{\mathop{\rm Trong}\nolimits} (ABD),AI \bot BD}\\{{\mathop{\rm Trong}\nolimits} \left( {{A^\prime }BD} \right),{A^\prime }I \bot BD}\end{array}} \right.\\ \Rightarrow \left[ {{A^\prime },BD,A} \right] = \widehat {{A^\prime }IA}\end{array}\)
Ta có: \(AI = \frac{1}{{\sqrt {\frac{1}{{A{B^2}}} + \frac{1}{{A{D^2}}}} }} = \frac{1}{{\sqrt {\frac{1}{{{a^2}}} + \frac{1}{{{{(2a)}^2}}}} }} = \frac{{2\sqrt 5 }}{5}a\)
Xét \(\Delta A{A^\prime }I\) vuông tại \(A:\tan \widehat {{A^\prime }IA} = \frac{{{A^\prime }A}}{{AI}} = \frac{{a\sqrt 3 }}{{\frac{{2\sqrt 5 }}{5}a}} = \frac{{3\sqrt 5 }}{2} \Rightarrow \widehat {{A^\prime }IA} \approx {73,4^^\circ }\)
Câu 2
a) \(2y' + y'' = \sqrt 2 {\rm{cos}}\left( {2x - \frac{\pi }{4}} \right)\).
b) \(2y + y'.{\rm{tan}}x = 0\).
Lời giải
|
a) Sai |
b) Sai |
c) Sai |
d) Đúng |
Ta có \(y' = \sin 2x\), \(y'' = 2{\rm{cos}}2x\), \(y''' = - 4\sin 2x\).
\(2y' + y'' = 2\left( {\sin 2x + {\rm{cos}}2x} \right) = 2\sqrt 2 {\rm{cos}}\left( {2x - \frac{\pi }{4}} \right)\),
\[2y + y'.{\rm{tan}}x = 2{\sin ^2}x + 2\sin x.{\rm{cos}}x.{\rm{tan}}x = 4{\sin ^2}x\],
\[4y - y'' = 4{\sin ^2}x - 2{\rm{cos}}2x = 2 - 4{\rm{cos2x}}\],
Câu 3
A. \(a\sqrt 2 \).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 4
A. \(y' = \frac{3}{{\left( {3x + 2} \right)\ln 3}}\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
A. \({a^{\frac{1}{3}}}\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
A.\(y = {\left( {\frac{{\rm{e}}}{\pi }} \right)^x}\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 7
A. \(AN \bot BC\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
