Câu hỏi:

11/12/2025 56 Lưu

Cho hình lập phương \(ABCD.A'B'C'D'\). Khẳng định nào sau đây sai?

A. \(mp\left( {AA'C'C} \right) \bot mp\left( {ABCD} \right)\). 

B. \(mp\left( {ABB'A'} \right) \bot mp\left( {BDD'B'} \right).\).

C. \(mp\left( {ABB'A'} \right) \bot mp\left( {A'B'C'D'} \right).\).        
D. \(mp\left( {ACC'A'} \right) \bot mp\left( {BB'D'D} \right).\)

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Chọn B

Cho hình lập phương ABCD.A'B'C'D'. Khẳng định nào sau đây sai? (ảnh 1)

\(\left\{ \begin{array}{l}mp\left( {ABB'A'} \right) \cap mp\left( {BDD'B'} \right) = BB'\\AB \bot BB'\\DB \bot BB'\end{array} \right. \Rightarrow \widehat {\left( {mp\left( {ABB'A'} \right),mp\left( {BDD'B'} \right)} \right)} = \widehat {\left( {AB,DB} \right)} = {45^0}\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 2

a) \({\log _c}\left( {a + b} \right) > 1 + {\log _c}2\).  

Đúng
Sai

b) \({\log _{ab}}c > 0\).  

Đúng
Sai

c) \({\log _a}\frac{b}{c} > 0\).

Đúng
Sai
d) \({\log _b}\frac{a}{c} < 0\).
Đúng
Sai

Lời giải

a) Sai

b) Sai

c) Đúng

d) Sai

Từ hình vẽ ta có: *) \[a > 1\]. Vì hàm \[y = {\log _a}x\] đồng biến: Tính từ trái qua phải đồ thị có dạng đi lên.

*) Lấy đối xứng đồ thị hàm số \[y =  - {b^x}\] qua trục \[Ox\]ta được đồ thị hàm số \[y = {b^x}\]

                               là hàm đồng biến, nên \[\,b > 1\].

*) \[0 < c < 1.\]Vì hàm \[y = {c^x}\] nghịch biến: Tính từ trái qua phải đt có dạng đi xuống.

Do đó:

\[\left. \begin{array}{l}a + b > 2\\0 < c < 1\end{array} \right\} \Rightarrow {\log _c}\left( {a + b} \right) < {\log _c}2 \Rightarrow \]Đáp án a sai.

\[\left. \begin{array}{l}0 < c < 1\\ab > 1\end{array} \right\} \Rightarrow {\log _{ab}}c < {\log _{ab}}1 = 0 \Rightarrow \]Đáp án b sai.

\[\left. \begin{array}{l}\frac{b}{c} > 1\\a > 1\end{array} \right\} \Rightarrow {\log _a}\frac{b}{c} > {\log _a}1 = 0 \Rightarrow \]Đáp án c đúng.

\[\left. \begin{array}{l}\frac{a}{c} > 1\\b > 1\end{array} \right\} \Rightarrow {\log _b}\frac{a}{c} > {\log _b}1 = 0 \Rightarrow \]Đáp án d sai.

Câu 3

Một chất điểm chuyển động theo phương trình \(S =  - {t^3} + 3{t^2} - 2\), trong đó t tính bằng giây và S tính theo mét. Vận tốc lớn nhất của chuyển động chất điểm đó là

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

A. \(\frac{{12}}{3}{\rm{c}}{{\rm{m}}^{\rm{3}}}\).   

B. \(\frac{{24}}{5}{\rm{c}}{{\rm{m}}^{\rm{3}}}\).  
C. \(\frac{{24}}{3}{\rm{c}}{{\rm{m}}^{\rm{3}}}\). 
D. \(24{\rm{c}}{{\rm{m}}^{\rm{3}}}\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP