Cho hình chóp \(S.ABCD\) có đáy \(ABCD\) là hình vuông tâm \(O\), \(SA \bot \left( {ABCD} \right)\). Khẳng định nào sau đây sai?
Cho hình chóp \(S.ABCD\) có đáy \(ABCD\) là hình vuông tâm \(O\), \(SA \bot \left( {ABCD} \right)\). Khẳng định nào sau đây sai?
A. \(\left( {SBC} \right) \bot \left( {SAB} \right)\).
Quảng cáo
Trả lời:
Chọn D
Ta có \[\left\{ \begin{array}{l}BC \bot AB\\BC \bot SA\end{array} \right. \Rightarrow BC \bot \left( {SAB} \right) \Rightarrow \left( {SBC} \right) \bot \left( {SAB} \right)\].
Ta có \(SA \bot \left( {ABCD} \right) \Rightarrow \left( {SAB} \right) \bot \left( {ABCD} \right)\) và \(\left( {SAC} \right) \bot \left( {ABCD} \right)\).
Vậy đáp án D sai.
Hot: 1000+ Đề thi giữa kì 2 file word cấu trúc mới 2026 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- Sách - Sổ tay kiến thức trọng tâm Vật lí 11 VietJack - Sách 2025 theo chương trình mới cho 2k8 ( 45.000₫ )
- Trọng tâm Sử, Địa, GD KTPL 11 cho cả 3 bộ Kết nối, Chân trời, Cánh diều VietJack - Sách 2025 ( 38.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Trả lời: \( \approx {62,7^0}\)
Lời giải
Kẻ \(BI \bot AC\)
Ta có: \(\left\{ {\begin{array}{*{20}{l}}{BI \bot AC}\\{BI \bot SA}\end{array} \Rightarrow BI \bot (SAC)} \right.\)
Ta có: \(\left\{ {\begin{array}{*{20}{l}}{(SAC) \cap (SBC) = SC}\\{{\mathop{\rm Trong}\nolimits} \,(SAC),IH \bot SC \Rightarrow [A,SC,B] = \widehat {IHB}}\\{{\mathop{\rm Trong}\nolimits} \,(SBC),BH \bot SC}\end{array}} \right.\)
Ta có:
Xét \(\Delta BH\) vuông tại \(I:\tan \widehat {BHI} = \frac{{BI}}{{HI}} = \frac{{\frac{{a\sqrt 3 }}{2}}}{{\frac{{\sqrt 5 }}{5}a}} = \frac{{\sqrt {15} }}{2} \Rightarrow \widehat {BHI} \approx {62,7^0}\)
Câu 2
A. \(90^\circ \).
Lời giải
Ta có \(B'C\;{\rm{//}}\;A'D\)\( \Rightarrow \widehat {\left( {A'B;B'C} \right)} = \widehat {\left( {A'B;A'D} \right)}\)\( = \widehat {DA'B}\).
Xét \(\Delta DA'B\) có \(A'D = A'B\)\( = BD\) nên \(\Delta DA'B\) là tam giác đều.
Vậy \(\widehat {DA'B}\)\( = 60^\circ \).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 4
a) \[{y^2} + {\left( {y'} \right)^2} = 4\].
b) \(4y + y'' = 0\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
A. \[\frac{1}{{\sqrt {14} }}\].
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
