Số lượng tế bào còn sống trong khoảng thời gian \(t\) (phút) kể từ lúc tiến hành thí nghiệm được xác định bởi \(f(t) = a.{e^{bt}}\)trong đó \(a,\,b\) là các hằng số cho trước. Nếu bắt đầu một thí nghiệm sinh học với \(5.000.000\) tế bào thì có \(45\% \) các tế bào sẽ chết sau mỗi phút, hỏi sau ít nhất bao lâu nó sẽ còn ít hơn \(1.000\) tế bào?
Số lượng tế bào còn sống trong khoảng thời gian \(t\) (phút) kể từ lúc tiến hành thí nghiệm được xác định bởi \(f(t) = a.{e^{bt}}\)trong đó \(a,\,b\) là các hằng số cho trước. Nếu bắt đầu một thí nghiệm sinh học với \(5.000.000\) tế bào thì có \(45\% \) các tế bào sẽ chết sau mỗi phút, hỏi sau ít nhất bao lâu nó sẽ còn ít hơn \(1.000\) tế bào?
Quảng cáo
Trả lời:
Trả lời: \(14,25\)phút.
Lời giải
Ta có \[f\left( t \right) = a.{e^{bt}}\]
Khi \[t = 0 \Rightarrow f\left( 0 \right) = 5.000.000\]\[ \Leftrightarrow a.{e^0} = 5.000.000 \Leftrightarrow a = 5.000.000\]
Khi \[t = 1 \Rightarrow f\left( 1 \right) = \frac{{100 - 45}}{{100}}a = \frac{{55}}{{100}}a\]\[ \Leftrightarrow a.{e^b} = \frac{{55}}{{100}}a \Leftrightarrow b = \ln \left( {\frac{{55}}{{100}}} \right)\].
Theo đề ta có bất phương trình \[f\left( t \right) = a.{e^{bt}} < 1000 \Leftrightarrow t > \frac{{\ln \left( {\frac{{1000}}{a}} \right)}}{b} \approx \]\[14,245\]
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- Sách - Sổ tay kiến thức trọng tâm Vật lí 11 VietJack - Sách 2025 theo chương trình mới cho 2k8 ( 45.000₫ )
- Trọng tâm Sử, Địa, GD KTPL 11 cho cả 3 bộ Kết nối, Chân trời, Cánh diều VietJack - Sách 2025 ( 38.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1
a) Phương trình có nghiệm dương nếu \[m > 0\].
b) Phương trình luôn có nghiệm với mọi \[m\].
c) Phương trình luôn có nghiệm duy nhất \[x = {\log _3}\left( {m + 1} \right)\].
Lời giải
|
a) Đúng |
b) Sai |
c) Sai |
d) Sai |
Ta có \[{3^x} > 0\], \[\forall x \in \mathbb{R}\] nên \[{3^x} = m + 1\] có nghiệm \[ \Leftrightarrow m + 1 > 0 \Leftrightarrow m > - 1\].
Từ đó ta loại được đáp án b và d
Xét đáp án a, phương trình có nghiệm dương thì \[{3^x} > {3^0} = 1\] nên \[m + 1 > 1 \Leftrightarrow m > 0\].
Từ đó đáp án a đúng.
Xét đáp án c, ta thấy sai vì ở đây thiếu điều kiện \[m > - 1\].
Câu 2
A. \(2\sqrt 5 a\).
Lời giải
Dựng \[AH \bot A'B\].
Ta có \[\left. \begin{array}{l}BC \bot AB\\BC \bot AA'\end{array} \right\} \Rightarrow BC \bot \left( {A'AB} \right)\]\[ \Rightarrow BC \bot AH\]
Vậy \[AH \bot \left( {A'BC} \right)\]\[ \Rightarrow d\left( {A,\left( {A'BC} \right)} \right) = AH\].
Xét tam giác vuông \[A'AB\] có \[\frac{1}{{A{H^2}}} = \frac{1}{{A{{A'}^2}}} + \frac{1}{{A{B^2}}}\]\[ \Leftrightarrow AH = \frac{{2\sqrt 5 a}}{5}\].
Câu 3
A. 0,3 .
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
A. \[\left( {SCD} \right) \bot \left( {SAD} \right) \cdot \]
B. \[\left( {SBC} \right) \bot \left( {SIA} \right) \cdot \]
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.