Câu hỏi:

11/12/2025 18 Lưu

Cho hình chóp \(S.ABCD\) có \(SA\) vuông góc với mặt phẳng \(\left( {ABCD} \right)\), \(ABCD\) là hình thang vuông có đáy lớn \(AD\) gấp đôi đáy nhỏ \(BC\), đồng thời đường cao \(AB = BC = a\). Biết \(SA = a\sqrt 3 \), khi đó khoảng cách từ đỉnh \(B\) đến đường thẳng \(SC\) là.

A. \(a\sqrt {10} \).   

B. \(2a\). 
C. \(\frac{{2a\sqrt 5 }}{5}\). 
D. \(\frac{{a\sqrt {10} }}{5}\).

Quảng cáo

Trả lời:

verified Giải bởi Vietjack
Cho hình chóp S.ABCD có SA vuông góc với mặt phẳng (ABCD), ABCD là hình thang vuông có đáy lớn AD gấp đôi đáy nhỏ BC, đồng thời đường cao AB = BC = a. (ảnh 1)

Ta có: \(\left\{ \begin{array}{l}BC \bot AB\\BC \bot SA\end{array} \right. \Rightarrow BC \bot SB\)\( \Rightarrow \Delta SBC\) vuông tại \(B\).

Trong \(\Delta SBC\) dựng đường cao \(BH\)\( \Rightarrow \)\(d\left( {B;SC} \right) = BH\).

\(SB = 2a\); \(\frac{1}{{B{H^2}}} = \frac{1}{{S{B^2}}} + \frac{1}{{B{C^2}}}\)\( \Rightarrow BH = \frac{{BS.BC}}{{\sqrt {B{S^2} + B{C^2}} }} = \frac{{2a\sqrt 5 }}{5}\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Trả lời: \(\frac{{32}}{{\sqrt {82} }}\).               

Lời giải

wGọi \(M\left( {{x_0};{y_0}} \right)\) là tiếp điểm của tiếp tuyến \(d\) với đồ thị \(\left( C \right)\).

Ta có \(y' =  - 3{x^2} + 6x \Rightarrow \) hệ số góc tiếp tuyến tại điểm \(M\) là \(y'\left( {{x_0}} \right) =  - 3x_0^2 + 6{x_0}\).

Mà tiếp tuyến \(d\) vuông góc với đường thẳng \(\Delta :y = \frac{1}{9}x + \frac{{2021}}{9}\) nên \(y'\left( {{x_0}} \right) =  - \frac{1}{k} =  - 9\).

Khi đó \(3x_0^2 - 6{x_0} - 9 = 0 \Leftrightarrow \left[ \begin{array}{l}{x_0} = 3\\{x_0} =  - 1\end{array} \right.\).

wNhư vậy

Phương trình tiếp tuyến \({d_1}\) tại điểm \(M\left( {3;0} \right)\) là \[{d_1}:9x + y - 27 = 0\].

Phương trình tiếp tuyến \({d_2}\) tại điểm \(M\left( { - 1;4} \right)\) là \({d_2}:9x + y + 5 = 0\).

Mặt khác \({d_1}{\rm{//}}{d_2}\) nên \(d\left( {{d_1};{d_2}} \right) = \frac{{32}}{{\sqrt {82} }}\).

Lời giải

Trả lời: \( \approx {54^^\circ }\)

Lời giải

Cho hình chóp S.ABCD có đáy là hình vuông cạnh 2a,SC vuông góc (ABCD) và SC = 3a. Tính góc phẳng nhị diện [B,SA,C]? (ảnh 1)

Ta có: \(\left\{ {\begin{array}{*{20}{l}}{BO \bot SA}\\{BO \bot AC}\end{array} \Rightarrow BO \bot (SAC)} \right.\)

Ta có: \(\left\{ {\begin{array}{*{20}{l}}{(SBA) \cap (SAC) = SA}\\{{\mathop{\rm Trong}\nolimits} \,(SAC),OI \bot SA \Rightarrow [B,SA,C] = [B,SA,O] = \widehat {BIO}}\\{{\mathop{\rm Trong}\nolimits} \,(SBA),BI \bot SA}\end{array}} \right.\)

Ta có:

Xét \(\Delta BOI\) vuông tại \(O:\tan \widehat {BIO} = \frac{{BO}}{{IO}} = \frac{{a\sqrt 2 }}{{\frac{{3\sqrt {34} }}{{17}}a}} = \frac{{\sqrt {17} }}{3} \Rightarrow \widehat {BIO} \approx {54^^\circ }\)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

A. \(\frac{{{a^3}}}{4}\).        

B. \(\frac{{{a^3}\sqrt 3 }}{6}\).        
C. \(\frac{{3{a^3}}}{4}\).           
D. \(\frac{{{a^3}\sqrt 3 }}{2}\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

Phần 3. Câu trả lời ngắn.

Thí sinh trả lời đáp án từ câu 1 đến câu 6.

An và Bình, mỗi bạn cùng gieo hai con xúc xắc cân đối và đồng chất. Tính xác suất để: tổng số điểm của hai bạn lớn hơn 8.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP