Câu hỏi:

11/12/2025 12 Lưu

Cho hình chóp \(S.ABCD\) có \(SA \bot (ABCD),SA = 2a,ABCD\) là hình vuông cạnh bằng \(a\). Gọi \(O\) là tâm của \(ABCD\).

Tính khoảng cách từ \(S\) đến \(DM\) với \(M\) là trung điểm \(OC\).

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Trả lời: \(d(S,DM) = \frac{{\sqrt {190} }}{5}a\)

Lời giải

Cho hình chóp S.ABCD có SA vuông góc (ABCD),SA = 2a,ABCD là hình vuông cạnh bằng a. Gọi O là tâm của ABCD.  Tính khoảng cách từ S đến DM với M là trung điểm OC. (ảnh 1)

Kẻ \(SK \bot DM\) tại \(K \Rightarrow d(S,DM) = SK\).

Ta có: \(\left\{ {\begin{array}{*{20}{l}}{DM \bot SA}\\{DM \bot SK}\end{array} \Rightarrow DM \bot (SAK) \Rightarrow DM \bot AK} \right.\)

Ta có:

\( \Rightarrow \frac{{KA}}{{OD}} = \frac{{AM}}{{DM}} \Rightarrow KA = \frac{{AM \cdot OD}}{{DM}} = \frac{{\frac{3}{4}a\sqrt 2  \cdot a\sqrt 2 }}{{\sqrt {{{\left( {\frac{{a\sqrt 2 }}{2}} \right)}^2} + {{\left( {\frac{{a\sqrt 2 }}{4}} \right)}^2}} }} = \frac{{3\sqrt {10} }}{5}a\)

Ta có: \(SK = \sqrt {S{A^2} + A{K^2}}  = \sqrt {{{(2a)}^2} + {{\left( {\frac{{3\sqrt {10} }}{5}a} \right)}^2}}  = \frac{{\sqrt {190} }}{5}a\)

Vậy \(d(S,DM) = \frac{{\sqrt {190} }}{5}a\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Trả lời: \(\frac{{32}}{{\sqrt {82} }}\).               

Lời giải

wGọi \(M\left( {{x_0};{y_0}} \right)\) là tiếp điểm của tiếp tuyến \(d\) với đồ thị \(\left( C \right)\).

Ta có \(y' =  - 3{x^2} + 6x \Rightarrow \) hệ số góc tiếp tuyến tại điểm \(M\) là \(y'\left( {{x_0}} \right) =  - 3x_0^2 + 6{x_0}\).

Mà tiếp tuyến \(d\) vuông góc với đường thẳng \(\Delta :y = \frac{1}{9}x + \frac{{2021}}{9}\) nên \(y'\left( {{x_0}} \right) =  - \frac{1}{k} =  - 9\).

Khi đó \(3x_0^2 - 6{x_0} - 9 = 0 \Leftrightarrow \left[ \begin{array}{l}{x_0} = 3\\{x_0} =  - 1\end{array} \right.\).

wNhư vậy

Phương trình tiếp tuyến \({d_1}\) tại điểm \(M\left( {3;0} \right)\) là \[{d_1}:9x + y - 27 = 0\].

Phương trình tiếp tuyến \({d_2}\) tại điểm \(M\left( { - 1;4} \right)\) là \({d_2}:9x + y + 5 = 0\).

Mặt khác \({d_1}{\rm{//}}{d_2}\) nên \(d\left( {{d_1};{d_2}} \right) = \frac{{32}}{{\sqrt {82} }}\).

Lời giải

Trả lời: \( \approx {54^^\circ }\)

Lời giải

Cho hình chóp S.ABCD có đáy là hình vuông cạnh 2a,SC vuông góc (ABCD) và SC = 3a. Tính góc phẳng nhị diện [B,SA,C]? (ảnh 1)

Ta có: \(\left\{ {\begin{array}{*{20}{l}}{BO \bot SA}\\{BO \bot AC}\end{array} \Rightarrow BO \bot (SAC)} \right.\)

Ta có: \(\left\{ {\begin{array}{*{20}{l}}{(SBA) \cap (SAC) = SA}\\{{\mathop{\rm Trong}\nolimits} \,(SAC),OI \bot SA \Rightarrow [B,SA,C] = [B,SA,O] = \widehat {BIO}}\\{{\mathop{\rm Trong}\nolimits} \,(SBA),BI \bot SA}\end{array}} \right.\)

Ta có:

Xét \(\Delta BOI\) vuông tại \(O:\tan \widehat {BIO} = \frac{{BO}}{{IO}} = \frac{{a\sqrt 2 }}{{\frac{{3\sqrt {34} }}{{17}}a}} = \frac{{\sqrt {17} }}{3} \Rightarrow \widehat {BIO} \approx {54^^\circ }\)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

A. \[{\log _a}b + {\log _a}c = {\log _a}\left( {b + c} \right)\].

B. \[{\log _a}b + {\log _a}c = {\log _a}\left| {b - c} \right|\].

C. \[{\log _a}b + {\log _a}c = {\log _a}\left( {bc} \right)\].  
D. \[{\log _a}b + {\log _a}c = {\log _a}\left( {b - c} \right)\].

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

a) \(f\left( {\frac{\pi }{2}} \right) =  - 1\).  

Đúng
Sai

b) \(f'\left( x \right) = \frac{{ - 2\sin 2x}}{{3.\sqrt[3]{{{{\cos }^2}2x}}}}\).  

Đúng
Sai

c) \(f'\left( {\frac{\pi }{2}} \right) = 1\). 

Đúng
Sai
d) \(3.{y^2}.y' + 2\sin 2x = 0\).
Đúng
Sai

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP