Phần 3. Câu trả lời ngắn.
Thí sinh trả lời đáp án từ câu 1 đến câu 6.
Một lớp học có 40 học sinh trong đó có 25 học sinh thích môn Toán, 20 học sinh thích môn Ngữ văn và 12 học sinh thích cả hai môn Ngữ văn và Toán. Tính xác suất để chọn được một học sinh thích môn Ngữ văn hoặc môn Toán.
Phần 3. Câu trả lời ngắn.
Thí sinh trả lời đáp án từ câu 1 đến câu 6.
Quảng cáo
Trả lời:
Trả lời: \(\frac{{33}}{{40}}\)
Lời giải
Xác suất để chọn được một học sinh thích môn Ngữ văn hoặc môn Toán: \(\frac{{25 + 20 - 12}}{{40}} = \frac{{33}}{{40}}\).Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- Trọng tâm Hóa học 11 dùng cho cả 3 bộ sách Kết nối, Cánh diều, Chân trời sáng tạo VietJack - Sách 2025 ( 58.000₫ )
- Sách - Sổ tay kiến thức trọng tâm Vật lí 11 VietJack - Sách 2025 theo chương trình mới cho 2k8 ( 45.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Trả lời: \( \approx {64,3^0}\)
Lời giải
Xét \(\Delta ADC\) cân tại \(D\), có \(\widehat {{\mkern 1mu} D{\mkern 1mu} } = {60^^\circ }\) nên \(\Delta ADC\) đều.
Kẻ \(CI \bot AD\)
Ta có: \(CI \bot SA \Rightarrow CI \bot (SAD)\) tại \(I\) và \(SC\) cắt mp \((SAD)\) tại \(S\) \( \Rightarrow SI\) là hình chiếu của \(SC\) trên mp\((SAD)\)
\( \Rightarrow (SC,(SAD)) = (SC,SI) = \widehat {CSI}\)
Ta có: \(SI = \sqrt {S{A^2} + A{I^2}} = \sqrt {{{(a\sqrt 3 )}^2} + {{\left( {\frac{a}{2}} \right)}^2}} = \frac{{\sqrt {13} }}{2}a\)
Xét \(\Delta SCI\) vuông tại \(I:\tan \widehat {CSI} = \frac{{SI}}{{IC}} = \frac{{\frac{{a\sqrt {13} }}{2}}}{{\frac{{\sqrt 3 a}}{2}}} = \frac{{\sqrt {39} }}{3} \Rightarrow \widehat {CSI} \approx {64,3^0}\)
Câu 2
a) Biến cố "Tích hai số ghi trên hai thẻ là một số chẵn" là \(A \cup B\).
b) \(P(A \cup B) = P(A) + P(B)\)
c) \(P(A) < P(B){\rm{ }}\)
Lời giải
|
a) Đúng |
b) Đúng |
c) Sai |
d) Sai |
Gọi \(A\) là biến cố "Rút được một thẻ đánh số chẵn và một thẻ đánh số lẻ", \(B\) là biến cố "Rút được hai thẻ đều đánh số chẵn”.
Khi đó biến cố "Tích hai số ghi trên hai thẻ là một số chẵn" là \(A \cup B\).
Do hai biến cố xung khắc nên \(P(A \cup B) = P(A) + P(B)\).
Vì có 10 số chẵn và 10 số lẻ nên ta có:
\(P(A) = \frac{{C_{10}^1 \cdot C_{10}^1}}{{C_{20}^2}} = \frac{{10}}{{19}},P(B) = \frac{{C_{10}^2}}{{C_{20}^2}} = \frac{9}{{38}}{\rm{. }}\)
Do đó, \(P(A \cup B) = P(A) + P(B) = \frac{{10}}{{19}} + \frac{9}{{38}} = \frac{{29}}{{38}}\).
Câu 3
a) \(\left( {\left( {SBC} \right),\left( {ABCD} \right)} \right) = \widehat {SBA}\).
b) \(d\left( {D,\left( {SAC} \right)} \right) = DO\).
c) \[\left( {SC,\left( {SAD} \right)} \right) = \widehat {CSD}\].
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
A. \(f'\left( x \right) = 2\sin 2x\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.