Câu hỏi:

16/12/2025 9 Lưu

Cho hình chóp \(SABC{\rm{D}}\) có \(SA = x\) và tất cả các cạnh đều bằng nhau và bằng \(a\). Các mệnh đề sau đúng hay sai?

a) \(\left( {SAC} \right) \bot \left( {ABC{\rm{D}}} \right)\).

Đúng
Sai

b) Tam giác \(SAC\) là tam giác vuông.

Đúng
Sai

c) \(\left( {SAC} \right) \bot \left( {SB{\rm{D}}} \right)\).

Đúng
Sai
d) Chiều cao của hình chóp\(S.ABC{\rm{D}}\) là \(h = \frac{{\sqrt {{a^2} + {x^2}} }}{2}\).
Đúng
Sai

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

a) Đúng

b) Đúng

c) Đúng

d) Sai

Media VietJackTứ giác \(ABCD\) có \(4\) cạnh bằng nhau \( \Rightarrow ABCD\) là hình thoi.

Gọi H là hình chiếu vuông góc của \(S\) lên \(\left( {ABCD} \right)\)

Vì \(SB = SC = SD\) \( \Rightarrow H\) là tâm đường tròn ngoại tiếp \(\Delta BC{\rm{D}}\)

Vì \(\Delta BC{\rm{D}}\) cân nên \(H\) thuộc trung tuyến kẻ từ \(C\).

\( \Rightarrow H \in AC\).

Nên đáp án \(A,\,C\)đúng.

Mà ta có: \( \Rightarrow H \in AC\).

Mà ta có: \(\Delta ABD = \Delta CBD = \Delta SBD\,\,(c - c - c) \Rightarrow AD = CO = SO \Rightarrow SO = \frac{1}{2}AC\)

\( \Rightarrow \Delta SAC\)vuông tại \(S\). Do đó đáp án b đúng.

Trong tam giác \(SAC\), kẻ \(SH \bot AC\).

Khi đó ta có: \(\left\{ \begin{array}{l}BD \bot SO\\BD \bot AC\end{array} \right. \Rightarrow BD \bot \left( {SAC} \right) \Rightarrow BD \bot SH\)\( \Rightarrow SH \bot (ABCD)\)

Suy ra: \(\frac{1}{{S{H^2}}} = \frac{1}{{S{A^2}}} + \frac{1}{{S{C^2}}} = \frac{1}{{{a^2}}} + \frac{1}{{{x^2}}} \Rightarrow SH = h = \frac{{{\rm{ax}}}}{{\sqrt {{a^2} + {b^2}} }}\).

Do đó đáp án d sai.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Trả lời: \(\frac{{7{a^3}\sqrt 3 }}{2}\)

Lời giải

Gọi \(O,I\) theo thứ tự là tâm của đáy lớn \(ABC\) và đáy bé \({A^\prime }{B^\prime }{C^\prime };K,J\) theo thứ tự là trung điểm của \(BC\) và \({B^\prime }{C^\prime }\).

Ta có \(h = IO = \frac{{3a}}{2}\) là chiều cao của hình chóp cụt đều \(ABC \cdot {A^\prime }{B^\prime }{C^\prime }\).

Một hình chóp cụt đều ABC.A'B'C' có cạnh đáy lớn bằng 4a, cạnh đáy nhỏ bằng 2a và chiều cao của nó bằng 3a/2. Tìm thể tích của khối chóp cụt đều đó. (ảnh 1)

Diện tích hai đáy hình chóp cụt đều là:

\({S_1} = {S_{\Delta ABC}} = \frac{{{{(4a)}^2}\sqrt 3 }}{4} = 4{a^2}\sqrt 3 ;{S_2} = {S_{\Delta {A^\prime }{B^\prime }{C^\prime }}} = \frac{{{{(2a)}^2}\sqrt 3 }}{4} = {a^2}\sqrt 3 \)

Thể tích khối chóp cụt đều là:

\(V = \frac{1}{3}h\left( {{S_1} + \sqrt {{S_1}{S_2}}  + {S_2}} \right)\)

\( = \frac{1}{3} \cdot \frac{{3a}}{2}\left( {4{a^2}\sqrt 3  + \sqrt {4{a^2}\sqrt 3  \cdot {a^2}\sqrt 3 }  + {a^2}\sqrt 3 } \right) = \frac{{7{a^3}\sqrt 3 }}{2}\) (đơn vị thể tích)

Lời giải

Trả lời: \(\frac{1}{6}\)

Lời giải

Vì hai bạn An và Bình tung xúc xắc ra kết quả độc lập. Do đó xác suất để hai bạn ra cùng số điểm là \(6 \cdot {\left( {\frac{1}{6}} \right)^2} = \frac{1}{6}\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

A. \(x = 2\). 

B. \(x = \frac{5}{2}\).
C. \(x = \frac{3}{2}\).  
D. \(x = 5\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

A. \[45^\circ \]. 

B. \[90^\circ \].
C. \[60^\circ \]. 
D. \[30^\circ \].

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP