Câu hỏi:

17/12/2025 49 Lưu

Ông An muốn thuê một chiếc xe ô tô (có lái xe) trong một tuần. Giá thuê xe được cho như bảng sau:

 

Phí cố định (nghìn đồng/ngày)

Phí tính theo quãng đường di chuyển (nghìn đồng/kilômét)

Từ thứ Hai đến thứ Sáu

900

8

Thứ Bảy và Chủ nhật

1500

10

Gọi \(x,y\) lần lượt là số kilômét ông An đi trong các ngày từ thứ Hai đến thứ Sáu và trong hai ngày cuối tuần. Biết rằng tổng số tiền ông An phải trả không vượt quá 14 triệu đồng. Bất phương trình nào dưới đây biểu thị mối liên hệ giữa \(x\)\(y\)?

A. \(4x + 5y < 3250\).      
B. \(4x + 5y \le 3250\).     
C. \(4x + 5y \ge 3250\).   
D. \(4x - 5y \le 3250\).

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Số tiền ông An phải trả khi đi trong các ngày từ thứ Hai đến thứ Sáu là \(900 \cdot 5 + 8 \cdot x\) (nghìn đồng).

Số tiền ông An phải trả khi đi trong hai ngày cuối tuần là \(1500 \cdot 2 + 10 \cdot y\) (nghìn đồng).

Theo đề ta có: \(900 \cdot 5 + 8x + 1500 \cdot 2 + 10y \le 14000\)\( \Leftrightarrow 4x + 5y \le 3250\). Chọn B.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

a) Hệ bất phương trình trên là hệ bất phương trình bậc nhất hai ẩn.

Đúng
Sai

b) Cặp số \(\left( {x;y} \right) = \left( {1;3} \right)\) là nghiệm của hệ bất phương trình trên.

Đúng
Sai

c) Miền nghiệm \(D\) của hệ bất phương trình trên là một tứ giác.

Đúng
Sai
d) Giá trị nhỏ nhất của biểu thức \(F\left( {x,y} \right) = - x + y\) trên miền D xác định bởi hệ trên bằng 1.
Đúng
Sai

Lời giải

a) Hệ bất phương trình trên là hệ bất phương trình bậc nhất hai ẩn.

b) Thay cặp số \(\left( {x;y} \right) = \left( {1;3} \right)\) vào hệ bất phương trình ta được \(\left\{ \begin{array}{l} - 2 \cdot 1 + 3 \le 2\\ - 1 + 2 \cdot 3 \ge 4\\1 + 3 \le 5\end{array} \right.\) (đúng).

Vậy cặp số \(\left( {x;y} \right) = \left( {1;3} \right)\) là nghiệm của hệ bất phương trình trên.

c) Miền nghiệm D của hệ là miền tam giác \(ABC\), kể cả các cạnh (phần tô màu) với \(A\left( {0;2} \right),B\left( {2;3} \right),C\left( {1;4} \right)\)

Cho hệ bất phương trình -2x + y bé hơn bằng 2 , -x + 2y lớn hơn 4 và x +y bé hơn bằng 5  (ảnh 1)

d) Biểu thức \(F\left( {x,y} \right) = - x + y\) đạt giá trị nhỏ nhất tại một trong 3 điểm \(A\left( {0;2} \right),B\left( {2;3} \right),C\left( {1;4} \right)\).

Khi đó \(F\left( {0,2} \right) = 0 + 2 = 2\); \(F\left( {2,3} \right) = - 2 + 3 = 1\); \(F\left( {1,4} \right) = - 1 + 4 = 3\).

Vậy giá trị nhỏ nhất của biểu thức \(F\left( {x,y} \right) = - x + y\) trên miền D xác định bởi hệ trên bằng 1.

Đáp án: a) Đúng;     b) Đúng;    c) Sai;    d) Đúng.

Lời giải

Gọi \(x,y\left( {x,y \in \mathbb{N}} \right)\) lần lượt là số quyển vở và bút bi An mua.

Theo đề ta có \(7000x + 5000y \le 100000\)\( \Leftrightarrow 7x + 5y \le 100\).

Mà An đã mua 10 quyển vở nên \(x = 10\).

Khi đó \(7 \cdot 10 + 5y \le 100\)\( \Leftrightarrow y \le 6\).

Vậy An có thể mua tối đa 6 chiếc bút bi.

Câu 4

A. \(\left\{ \begin{array}{l}2x + y + 2 \ge 0\\5x + 2y + 3 > 0\end{array} \right.\).     
B. \(\left\{ \begin{array}{l}x + {y^2} = 3\\x - 5y - 3 = 0\end{array} \right.\).  
C. \(\left\{ \begin{array}{l} - 2x + y > 2\\x + y < 2\end{array} \right.\).                    
D. \(\left\{ \begin{array}{l}y - 2 < 0\\x + 5 \ge 0\end{array} \right.\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

A. \(x + 2y \le 3\).                  

B. \(2x + y < 3\).               
C. \(x - 2y > - 3\).             
D. \(x + 2y < 3\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP