Câu hỏi:

17/12/2025 8 Lưu

Mỗi bãi đỗ xe ban đêm có diện tích đậu xe là 150 m2 (không tính lối đi cho xe ra vào). Cho biết xe du lịch cần diện tích 3 m2/ chiếc và phải trả phí 40 nghìn đồng, xe tải cần diện tích 5 m2/chiếc và phải trả phí 50 nghìn đồng. Nhân viên quản lí không thể phục vụ quá 40 xe một đêm. Hỏi bãi giữ xe nên cho đăng kí mỗi loại xe bao nhiêu chiếc xe để doanh thu lớn nhất? Gọi \(x\) là số xe du lịch và \(y\) là số xe tải mà chủ bãi xe nên cho xe đỗ một đêm. Khi đó:

a) Điều kiện \(x \ge 0;y \ge 0\).

Đúng
Sai

b) Giải bài toán trên bằng cách lập hệ bất phương trình bậc nhất 2 ẩn thì biểu diễn hình học miền nghiệm của hệ là một hình tam giác.

Đúng
Sai

c) Tổng doanh thu của bãi xe trong 1 đêm là \(40x + 50y\).

Đúng
Sai
d) Để có doanh thu cao nhất, chủ bãi xe cho đăng kí 25 chiếc xe du lịch và 15 chiếc xe tải một đêm.
Đúng
Sai

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

a) Điều kiện \(x \ge 0;y \ge 0\).

b) Tổng diện tích cho \(x\) là số xe du lịch và \(y\) là số xe tải là \(3x + 5y\) (m2).

Theo đề ta có hệ \(\left\{ \begin{array}{l}x \ge 0\\y \ge 0\\3x + 5y \le 150\\x + y \le 40\end{array} \right.\).

Miền nghiệm của hệ bất phương trình là miền tứ giác \(OABC\), kể cả các cạnh (phần tô màu) với \(O\left( {0;0} \right),A\left( {0;30} \right),B\left( {25;15} \right),C\left( {40;0} \right)\).

Mỗi bãi đỗ xe ban đêm có diện tích đậu xe là 150 m2 (không tính lối đi cho xe ra vào). Cho biết xe du lịch (ảnh 1)

c) Tổng doanh thu của bãi xe trong 1 đêm là \(F\left( {x,y} \right) = 40x + 50y\).

d) Doanh thu của bãi xe đạt giá trị lớn nhất tại 1 trong 4 điểm \(O\left( {0;0} \right),A\left( {0;30} \right),B\left( {25;15} \right),C\left( {40;0} \right)\).

Khi đó \(F\left( {0,0} \right) = 40 \cdot 0 + 50 \cdot 0 = 0\); \(F\left( {0;30} \right) = 40 \cdot 0 + 50 \cdot 30 = 1500\);

\(F\left( {25,15} \right) = 40 \cdot 25 + 50 \cdot 15 = 1750\); \(F\left( {40;0} \right) = 40 \cdot 40 + 50 \cdot 0 = 1600\).

Vậy để có doanh thu cao nhất, chủ bãi xe cho đăng kí 25 chiếc xe du lịch và 15 chiếc xe tải một đêm.

Đáp án: a) Đúng;     b) Sai;    c) Đúng;    d) Đúng.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Miền nghiệm của hệ bất phương trình là miền tam giác \(ABC\), kể cả các cạnh (phần tô màu) như hình vẽ với \(A\left( { - 5; - 1} \right),B\left( { - 1; - 2} \right),C\left( {5;4} \right)\).

Cho biểu thức T=3x-2y -4  với x  và y  thỏa mãn hệ bất phương trình  (ảnh 1)

Biểu thức \(T = 3x - 2y - 4\) đạt giá trị nhỏ nhất tại một trong ba điểm \(A\left( { - 5; - 1} \right),B\left( { - 1; - 2} \right),C\left( {5;4} \right)\).

Ta có \(T\left( { - 5, - 1} \right) = 3 \cdot \left( { - 5} \right) - 2 \cdot \left( { - 1} \right) - 4 = - 17\); \(T\left( { - 1, - 2} \right) = 3 \cdot \left( { - 1} \right) - 2 \cdot \left( { - 2} \right) - 4 = - 3\);

\(T\left( {5,4} \right) = 3 \cdot 5 - 2 \cdot 4 - 4 = 3\).

Vậy giá trị nhỏ nhất của T là \( - 17\) khi \(x = - 5;y = - 1\).

Suy ra \(x_0^2 + y_0^2 = 26\).

Câu 2

a) Hệ bất phương trình trên là hệ bất phương trình bậc nhất hai ẩn.

Đúng
Sai

b) Cặp số \(\left( {x;y} \right) = \left( {1;3} \right)\) là nghiệm của hệ bất phương trình trên.

Đúng
Sai

c) Miền nghiệm \(D\) của hệ bất phương trình trên là một tứ giác.

Đúng
Sai
d) Giá trị nhỏ nhất của biểu thức \(F\left( {x,y} \right) = - x + y\) trên miền D xác định bởi hệ trên bằng 1.
Đúng
Sai

Lời giải

a) Hệ bất phương trình trên là hệ bất phương trình bậc nhất hai ẩn.

b) Thay cặp số \(\left( {x;y} \right) = \left( {1;3} \right)\) vào hệ bất phương trình ta được \(\left\{ \begin{array}{l} - 2 \cdot 1 + 3 \le 2\\ - 1 + 2 \cdot 3 \ge 4\\1 + 3 \le 5\end{array} \right.\) (đúng).

Vậy cặp số \(\left( {x;y} \right) = \left( {1;3} \right)\) là nghiệm của hệ bất phương trình trên.

c) Miền nghiệm D của hệ là miền tam giác \(ABC\), kể cả các cạnh (phần tô màu) với \(A\left( {0;2} \right),B\left( {2;3} \right),C\left( {1;4} \right)\)

Cho hệ bất phương trình -2x + y bé hơn bằng 2 , -x + 2y lớn hơn 4 và x +y bé hơn bằng 5  (ảnh 1)

d) Biểu thức \(F\left( {x,y} \right) = - x + y\) đạt giá trị nhỏ nhất tại một trong 3 điểm \(A\left( {0;2} \right),B\left( {2;3} \right),C\left( {1;4} \right)\).

Khi đó \(F\left( {0,2} \right) = 0 + 2 = 2\); \(F\left( {2,3} \right) = - 2 + 3 = 1\); \(F\left( {1,4} \right) = - 1 + 4 = 3\).

Vậy giá trị nhỏ nhất của biểu thức \(F\left( {x,y} \right) = - x + y\) trên miền D xác định bởi hệ trên bằng 1.

Đáp án: a) Đúng;     b) Đúng;    c) Sai;    d) Đúng.

Câu 3

a) Hệ trên là một hệ bất phương trình bậc nhất hai ẩn.

Đúng
Sai

b) \(\left( {0;0} \right)\) là một nghiệm của hệ bất phương trình trên.

Đúng
Sai

c) \(\left( {1; - 1} \right)\)là một nghiệm của hệ bất phương trình trên.

Đúng
Sai
d) Biểu thức \(L = y - x\) đạt giá trị lớn nhất là \(a\) và đạt giá trị nhỏ nhất là \(b\). Khi đó \(a + b = \frac{7}{2}\).
Đúng
Sai

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

A. \(x + 2y \le 3\).                  

B. \(2x + y < 3\).               
C. \(x - 2y > - 3\).             
D. \(x + 2y < 3\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

A. \(6\).                            
B. \(7\).                             
C. \(5\).                             
D. \(8\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP