Câu hỏi:

18/12/2025 8 Lưu

Cho hàm số \(y = f\left( x \right)\) liên tục, không âm trên đoạn \(\left[ {a\,;\,b} \right]\) như hình. Hình phẳng \(\left( H \right)\) giới hạn bởi đồ thị hàm số \(y = f\left( x \right)\), trục hoành và hai đường thẳng \(x = a\); \(x = b\) quay quanh trục \(Ox\) tạo thành một khối tròn xoay có thể tích bằng    
Đáp án đúng là: A Ta có \(\int {{x^3}} {\rm{d}}x = \frac{{{x^4}}}{4} + C\). (ảnh 1)

A. \(V = \pi \int\limits_b^a {{{\left[ {f\left( x \right)} \right]}^2}{\rm{d}}x} \).                            
B. \(V = \int\limits_a^b {\left| {f\left( x \right)} \right|{\rm{d}}x} \).     
C. \(V = \int\limits_a^b {{{\left[ {f\left( x \right)} \right]}^2}{\rm{d}}x} \).                            
D. \(V = \pi \int\limits_a^b {{{\left[ {f\left( x \right)} \right]}^2}{\rm{d}}x} \).

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Đáp án đúng là: D

Ta có : \(V = \pi \int\limits_a^b {{f^2}\left( x \right)} dx.\)

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Trả lời: 4

Hình phẳng đã cho được giới hạn bởi các đồ thị hàm số \(y = \cos x,\,y = x\) và hai đường thẳng \(x = 1,\,x = 3\). Khi đó diện tích hình phẳng được tính theo công thức

\(S = \int\limits_1^3 {\left| {\cos x - x} \right|{\rm{d}}x} \). Vì \(x \ge \cos x,\,\forall x \in \left[ {1;3} \right]\) nên ta có:

\(S = \int\limits_1^3 {\left( {x - \cos x} \right){\rm{d}}x} = \left. {\left( {\frac{{{x^2}}}{2} - \sin x} \right)} \right|_1^3 = 4 - \sin 3 + \sin 1 \approx 4\).

Lời giải

Trả lời: 15

Đường thẳng \(AB\) có vectơ chỉ phương là \(\vec u = (5;\,10;\, - 3)\), mặt phẳng \(\left( {Oxy} \right)\) có vectơ pháp tuyến là \(\vec n = (0\,;0\,;1)\).

Từ đó, góc \(\alpha \) giữa đường bay (một phần của đường thẳng \(AB\)) và sân bay (một phần của mặt phẳng\((Oxy))\)\(\sin \alpha = \frac{3}{{\sqrt {134} }}\).

Suy ra \(\alpha \approx 15^\circ \).

Câu 6

A. \(\frac{x}{3} - \frac{y}{2} - \frac{z}{7} + 1 = 0\).                               
B. \(\frac{x}{3} + \frac{y}{2} + \frac{z}{7} = 1\).         
C. \(\frac{x}{3} - \frac{y}{2} - \frac{z}{7} = 1\).         
D. \(\frac{x}{3} - \frac{y}{2} + \frac{z}{7} = 1\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP