Câu hỏi:

18/12/2025 8 Lưu

Cho hàm số \(y = f\left( x \right)\) liên tục trên \(\mathbb{R}\) thỏa mãn . Giá trị của biểu thức \(\int\limits_0^1 {f\left( x \right){\rm{d}}x} \) bằng    

A. 7.                         
B. 1.                         
C. 12.                               
D. 0,75.

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Đáp án đúng là: B

Ta có: \(\int\limits_0^2 {f\left( x \right){\rm{d}}x} = \int\limits_0^1 {f\left( x \right){\rm{d}}x} + \int\limits_1^2 {f\left( x \right){\rm{d}}x} \)

\( \Rightarrow \int\limits_0^1 {f\left( x \right){\rm{d}}x} = \int\limits_0^2 {f\left( x \right){\rm{d}}x} - \int\limits_1^2 {f\left( x \right){\rm{d}}x} = 4 - 3 = 1\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Trả lời: 15

Đường thẳng \(AB\) có vectơ chỉ phương là \(\vec u = (5;\,10;\, - 3)\), mặt phẳng \(\left( {Oxy} \right)\) có vectơ pháp tuyến là \(\vec n = (0\,;0\,;1)\).

Từ đó, góc \(\alpha \) giữa đường bay (một phần của đường thẳng \(AB\)) và sân bay (một phần của mặt phẳng\((Oxy))\)\(\sin \alpha = \frac{3}{{\sqrt {134} }}\).

Suy ra \(\alpha \approx 15^\circ \).

Lời giải

Trả lời: 4

Hình phẳng đã cho được giới hạn bởi các đồ thị hàm số \(y = \cos x,\,y = x\) và hai đường thẳng \(x = 1,\,x = 3\). Khi đó diện tích hình phẳng được tính theo công thức

\(S = \int\limits_1^3 {\left| {\cos x - x} \right|{\rm{d}}x} \). Vì \(x \ge \cos x,\,\forall x \in \left[ {1;3} \right]\) nên ta có:

\(S = \int\limits_1^3 {\left( {x - \cos x} \right){\rm{d}}x} = \left. {\left( {\frac{{{x^2}}}{2} - \sin x} \right)} \right|_1^3 = 4 - \sin 3 + \sin 1 \approx 4\).

Câu 5

A. \(\frac{x}{3} - \frac{y}{2} - \frac{z}{7} + 1 = 0\).                               
B. \(\frac{x}{3} + \frac{y}{2} + \frac{z}{7} = 1\).         
C. \(\frac{x}{3} - \frac{y}{2} - \frac{z}{7} = 1\).         
D. \(\frac{x}{3} - \frac{y}{2} + \frac{z}{7} = 1\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

A. \[f\left( x \right) = \frac{{{x^4}}}{4} + C\].                              
B. \[f\left( x \right) = 3{x^2}\].                      
C. \[f\left( x \right) = 4{x^3}\].                      
D. \[f\left( x \right) = 3{x^4}\].

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP