Câu hỏi:

18/12/2025 8 Lưu

Cho hai biến cố \(A\)\(B\). Xác suất của biến cố \(A\) với điều kiện biến cố \(B\) đã xảy ra được gọi là xác suất của \(A\) với điều kiện \(B\), ký hiệu là PAB. Phát biểu nào sau đây đúng?    

A. Nếu \(P\left( A \right) > 0\) thì \(P\left( {\left. A \right|B} \right) = \frac{{P\left( {A \cap B} \right)}}{{P\left( A \right)}}\).    
B. Nếu \(P\left( B \right) > 0\) thì \(P\left( {\left. A \right|B} \right) = \frac{{P\left( {A \cap B} \right)}}{{P\left( B \right)}}\).    
C. Nếu \(P\left( {A \cap B} \right) > 0\) thì \(P\left( {\left. A \right|B} \right) = \frac{{P\left( A \right)}}{{P\left( {A \cap B} \right)}}\).    
D. Nếu \(P\left( {A \cap B} \right) > 0\) thì \(P\left( {\left. A \right|B} \right) = \frac{{P\left( B \right)}}{{P\left( {A \cap B} \right)}}\).

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Đáp án đúng là: B

Công thức tính xác suất của biến cố \(A\) khi biết biến cố \(B\) đã xảy ra\(\left( {P\left( B \right) > 0} \right)\) là: \(P\left( {A|B} \right) = \frac{{P\left( {A \cap B} \right)}}{{P\left( B \right)}}\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Trả lời: 4

Hình phẳng đã cho được giới hạn bởi các đồ thị hàm số \(y = \cos x,\,y = x\) và hai đường thẳng \(x = 1,\,x = 3\). Khi đó diện tích hình phẳng được tính theo công thức

\(S = \int\limits_1^3 {\left| {\cos x - x} \right|{\rm{d}}x} \). Vì \(x \ge \cos x,\,\forall x \in \left[ {1;3} \right]\) nên ta có:

\(S = \int\limits_1^3 {\left( {x - \cos x} \right){\rm{d}}x} = \left. {\left( {\frac{{{x^2}}}{2} - \sin x} \right)} \right|_1^3 = 4 - \sin 3 + \sin 1 \approx 4\).

Lời giải

Trả lời: 15

Đường thẳng \(AB\) có vectơ chỉ phương là \(\vec u = (5;\,10;\, - 3)\), mặt phẳng \(\left( {Oxy} \right)\) có vectơ pháp tuyến là \(\vec n = (0\,;0\,;1)\).

Từ đó, góc \(\alpha \) giữa đường bay (một phần của đường thẳng \(AB\)) và sân bay (một phần của mặt phẳng\((Oxy))\)\(\sin \alpha = \frac{3}{{\sqrt {134} }}\).

Suy ra \(\alpha \approx 15^\circ \).

Câu 6

A. \(\frac{x}{3} - \frac{y}{2} - \frac{z}{7} + 1 = 0\).                               
B. \(\frac{x}{3} + \frac{y}{2} + \frac{z}{7} = 1\).         
C. \(\frac{x}{3} - \frac{y}{2} - \frac{z}{7} = 1\).         
D. \(\frac{x}{3} - \frac{y}{2} + \frac{z}{7} = 1\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP