Câu hỏi:

18/12/2025 11 Lưu

Một cuộc thi khoa học có \(36\) bộ câu hỏi, trong đó có \(20\) bộ câu hỏi về chủ đề tự nhiên và \(16\) bộ câu hỏi về chủ đề xã hội. Bạn An lấy ngẫu nhiên \(1\) bộ câu hỏi (lấy không hoàn lại), sau đó bạn Bình lấy ngẫu nhiên \(1\) bộ câu hỏi. Xác suất bạn Bình lấy được bộ câu hỏi về chủ đề xã hội bằng \(\frac{a}{b}\) với \(\frac{a}{b}\) là phân số tối giản. Giá trị của \(a + b\) bằng bao nhiêu?

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Đáp án:

13

Trả lời: 13

Xét các biến cố:

A: “Bạn An lấy được bộ câu hỏi về chủ đề tự nhiên”;

B: “Bạn Bình lấy được bộ câu hỏi về chủ đề xã hội”.

Khi đó, \(P\left( A \right) = \frac{{20}}{{36}} = \frac{5}{9};P\left( {\overline A } \right) = 1 - P\left( A \right) = 1 - \frac{5}{9} = \frac{4}{9}\).

Nếu bạn An chọn được một bộ câu hỏi về chủ đề tự nhiên thì sau đó còn \(35\) bộ câu hỏi, trong đó có \(16\) câu hỏi về chủ đề xã hội, suy ra \(P\left( {B|A} \right) = \frac{{16}}{{35}}\).

Nếu bạn An chọn được một bộ câu hỏi về chủ đề xã hội thì sau đó còn \(35\) bộ câu hỏi, trong đó có \(15\) câu hỏi về chủ đề xã hội, suy ra \(P\left( {B|\overline A } \right) = \frac{{15}}{{35}}\).

Xác suất bạn Bình lấy được bộ câu hỏi về chủ đề xã hội là

\(P\left( B \right) = P\left( A \right).P\left( {B|A} \right) + P\left( {\overline A } \right).P\left( {B|\overline A } \right)\)\( = \frac{5}{9}.\frac{{16}}{{35}} + \frac{4}{9}.\frac{{15}}{{35}} = \frac{4}{9}\).

Suy ra \(a + b = 13\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Trả lời: 15

Đường thẳng \(AB\) có vectơ chỉ phương là \(\vec u = (5;\,10;\, - 3)\), mặt phẳng \(\left( {Oxy} \right)\) có vectơ pháp tuyến là \(\vec n = (0\,;0\,;1)\).

Từ đó, góc \(\alpha \) giữa đường bay (một phần của đường thẳng \(AB\)) và sân bay (một phần của mặt phẳng\((Oxy))\)\(\sin \alpha = \frac{3}{{\sqrt {134} }}\).

Suy ra \(\alpha \approx 15^\circ \).

Lời giải

Trả lời: 4

Hình phẳng đã cho được giới hạn bởi các đồ thị hàm số \(y = \cos x,\,y = x\) và hai đường thẳng \(x = 1,\,x = 3\). Khi đó diện tích hình phẳng được tính theo công thức

\(S = \int\limits_1^3 {\left| {\cos x - x} \right|{\rm{d}}x} \). Vì \(x \ge \cos x,\,\forall x \in \left[ {1;3} \right]\) nên ta có:

\(S = \int\limits_1^3 {\left( {x - \cos x} \right){\rm{d}}x} = \left. {\left( {\frac{{{x^2}}}{2} - \sin x} \right)} \right|_1^3 = 4 - \sin 3 + \sin 1 \approx 4\).

Câu 5

A. \(\frac{x}{3} - \frac{y}{2} - \frac{z}{7} + 1 = 0\).                               
B. \(\frac{x}{3} + \frac{y}{2} + \frac{z}{7} = 1\).         
C. \(\frac{x}{3} - \frac{y}{2} - \frac{z}{7} = 1\).         
D. \(\frac{x}{3} - \frac{y}{2} + \frac{z}{7} = 1\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

A. \[S = \int\limits_{ - 1}^{ - 0,5} {f\left( x \right)dx} \].                                             
B. \[S = \int\limits_{ - 1}^0 {f\left( x \right)dx} \].                 
C. \[S = - \left| {\int\limits_1^{ - 0,5} {f\left( x \right)dx} } \right|\].                                                       
D.\[S = - \int\limits_{ - 1}^{0,5} {f\left( x \right)dx} \].

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP