Cho \(A,B\) là các biến cố của một phép thử \(T.\) Biết rằng \(0 < P\left( B \right) < 1,\) xác suất của biến cố \(A\) được tính theo công thức nào sau đây?
Quảng cáo
Trả lời:
Đáp án đúng là: A
Theo công thức xác suất toàn phần, ta có \(P\left( A \right) = P\left( B \right).P\left( {\left. A \right|B} \right) + P\left( {\bar B} \right).P\left( {\left. A \right|\bar B} \right).\)
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- 20 Bộ đề, Tổng ôn, sổ tay môn Toán (có đáp án chi tiết) ( 55.000₫ )
- 500 Bài tập tổng ôn môn Toán (Form 2025) ( 38.500₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Bộ đề thi tốt nghiệp 2025 các môn Toán, Lí, Hóa, Văn, Anh, Sinh, Sử, Địa, KTPL (có đáp án chi tiết) ( 36.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Trả lời: 240
Cốc hình trụ có bán kính R = 6 cm, chiều cao h = 10 cm.
Chọn hệ trục tọa độ như hình vẽ

Mặt phẳng tùy ý vuông góc với trục \(Ox\) tại điểm \(x\left( { - 6 \le x \le 6} \right)\) cắt vật thể theo theo thiết diện có diện tích là \(S\left( x \right)\).
Ta có \(S\left( x \right) = {S_{ABC}} = \frac{1}{2}AB.BC = \frac{1}{2}B{C^2}\tan \alpha = \frac{1}{2}\left( {{R^2} - {x^2}} \right)\frac{h}{R} = \frac{{5\left( {36 - {x^2}} \right)}}{6}\).
Vậy thể tích lượng nước trong cốc là \(V = \int\limits_{ - 6}^6 {S\left( x \right)dx} = \int\limits_{ - 6}^6 {\frac{{5\left( {36 - {x^2}} \right)}}{6}dx} = 240\;{\rm{c}}{{\rm{m}}^{\rm{3}}}\).
Lời giải
Trả lời: −6
Suy ra: \(a = 2,b = - 3\). Do đó \(P = ab = - 6\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 7
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
