Câu hỏi:

18/12/2025 8 Lưu

Trong không gian \(Oxyz\), cho mặt cầu \(\left( S \right){\rm{: }}{x^2} + {y^2} + {z^2} - 2{\rm{z}} - 3 = 0\) và điểm \(A\left( {2\,;2\,;2} \right)\). Từ \(A\) kẻ được các tiếp tuyến đến mặt cầu \(\left( S \right)\). Biết các tiếp điểm luôn thuộc mặt phẳng \(\left( \alpha \right)\)có phương trình \(ax + by + c{\rm{z}} - 5 = 0\). Tính \(a + b + c\).

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Đáp án:

5

Trả lời: 5

Mặt cầu \(\left( S \right)\) có tâm \(I\left( {0\,;0\,;1} \right)\), bán kính \(R = 2\).

\(\overrightarrow {IA} = \left( {2\,;2\,;1} \right)\)\( \Rightarrow IA = 3\). Kẻ một tiếp tuyến \(AB\) đến mặt cầu \(\left( S \right)\), với \(B\) là tiếp điểm.

Ta có tam giác \(ABI\) vuông tại \(B\) nên ta có \(AB = \sqrt {I{A^2} - I{B^2}} = \sqrt 5 \).

Gọi \(H\left( {x\,;y\,;z} \right)\) là chân đường cao kẻ từ \(B\) của tam giác \(ABI\).

Ta có: \(I{B^2} = IH.IA \Rightarrow IH = \frac{{I{B^2}}}{{IA}} = \frac{4}{3} \Rightarrow IH = \frac{4}{9}.IA\).

Từ suy ra được \(\overrightarrow {IH} = \frac{4}{9}\overrightarrow {IA} \Rightarrow \left\{ \begin{array}{l}x - 0 = \frac{4}{9}.2\\y - 0 = \frac{4}{9}.2\\z - 1 = \frac{4}{9}.1\end{array} \right.\)\( \Leftrightarrow \left\{ \begin{array}{l}x = \frac{8}{9}\\y = \frac{8}{9}\\z = \frac{{13}}{9}\end{array} \right.\)\( \Rightarrow H\left( {\frac{8}{9}\,;\frac{8}{9}\,;\frac{{13}}{9}} \right)\).

Mặt phẳng \(\left( \alpha \right)\) vuông góc với đường thẳng \(IA\) nên nhận \(\overrightarrow {IA} = \left( {2\,;2\,;1} \right)\) làm vectơ pháp tuyến. Hơn nữa mặt phẳng \(\left( \alpha \right)\) đi qua điểm \(H\).

Vậy \(\left( \alpha \right)\) có phương trình: \(2.\left( {x - \frac{8}{9}} \right) + 2.\left( {y - \frac{8}{9}} \right) + 1.\left( {z - \frac{{13}}{9}} \right) = 0\)\( \Leftrightarrow 2x + 2y + z - 5 = 0\).

Suy ra \(a + b + c = 5\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Đáp án đúng là: B

Đường thẳng \({d_1}\) đi qua điểm \({M_1}\left( {1;\, - 1;\,1} \right),\)có 1 vectơ chỉ phương \(\overrightarrow {{u_1}} = \left( {1;\,2;\, - 1} \right)\).

Đường thẳng \({d_2}\) đi qua điểm \({M_2}\left( { - 1;\,0;\,1} \right),\)có 1 vectơ chỉ phương \(\overrightarrow {{u_2}} = \left( { - 1;\,2;\,1} \right)\).

Mặt phẳng \(\left( P \right)\) chứa đường thẳng \({d_1}\) và song song với đường thẳng \({d_2}\) suy ra \(\left( P \right)\)đi qua điểm\({M_1}\left( {1;\, - 1;\,1} \right),\)có 1 vectơ pháp tuyến \(\overrightarrow n = \left[ {\overrightarrow {{u_1}} ,\overrightarrow {{u_2}} } \right] = \left( {4;\,0;\,4} \right)\).

Phương trình mặt phẳng \(\left( P \right)\): \(4\left( {x - 1} \right) + 0\left( {y + 1} \right) + 4\left( {z - 1} \right) = 0 \Leftrightarrow x + z - 2 = 0\).

Dễ thấy điểm \(Q\left( {0;\,1;\,2} \right) \in \left( P \right).\)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

A.\[\overrightarrow n = \left( {0;1;1} \right)\].                      
B.\[\overrightarrow n = \left( {0; - 1;1} \right)\].                      
C.\[\overrightarrow n = \left( {1;0;1} \right)\].                      
D.\[\overrightarrow n = \left( {0;2;1} \right)\].

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

A. \(P\left( A \right) = P\left( B \right).P\left( {\left. A \right|B} \right) + P\left( {\bar B} \right).P\left( {\left. A \right|\bar B} \right).\)              
B. \(P\left( A \right) = P\left( B \right).P\left( {\left. B \right|A} \right) + P\left( {\bar B} \right).P\left( {\left. B \right|\bar A} \right).\)    
C. \(P\left( A \right) = P\left( A \right).P\left( {\left. A \right|B} \right) + P\left( {\bar A} \right).P\left( {\left. A \right|\bar B} \right).\)              
D. \(P\left( A \right) = P\left( A \right).P\left( {\left. B \right|A} \right) + P\left( {\bar A} \right).P\left( {\left. B \right|\bar A} \right).\)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

A. \[M\left( { - 1;0;0} \right)\]               
B. \(N\left( {0; - 2;0} \right)\).              
C. \(P\left( {1; - 2;1} \right)\).                      
D. \(Q\left( {1;2; - 1} \right)\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP