Câu hỏi:

24/12/2025 38 Lưu

Trong không gian \(Oxyz\), cho mặt cầu \(\left( S \right){\rm{: }}{x^2} + {y^2} + {z^2} - 2{\rm{z}} - 3 = 0\) và điểm \(A\left( {2\,;2\,;2} \right)\). Từ \(A\) kẻ được các tiếp tuyến đến mặt cầu \(\left( S \right)\). Biết các tiếp điểm luôn thuộc mặt phẳng \(\left( \alpha \right)\)có phương trình \(ax + by + c{\rm{z}} - 5 = 0\). Tính \(a + b + c\).

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Đáp án:

5

Trả lời: 5

Mặt cầu \(\left( S \right)\) có tâm \(I\left( {0\,;0\,;1} \right)\), bán kính \(R = 2\).

\(\overrightarrow {IA} = \left( {2\,;2\,;1} \right)\)\( \Rightarrow IA = 3\). Kẻ một tiếp tuyến \(AB\) đến mặt cầu \(\left( S \right)\), với \(B\) là tiếp điểm.

Ta có tam giác \(ABI\) vuông tại \(B\) nên ta có \(AB = \sqrt {I{A^2} - I{B^2}} = \sqrt 5 \).

Gọi \(H\left( {x\,;y\,;z} \right)\) là chân đường cao kẻ từ \(B\) của tam giác \(ABI\).

Ta có: \(I{B^2} = IH.IA \Rightarrow IH = \frac{{I{B^2}}}{{IA}} = \frac{4}{3} \Rightarrow IH = \frac{4}{9}.IA\).

Từ suy ra được \(\overrightarrow {IH} = \frac{4}{9}\overrightarrow {IA} \Rightarrow \left\{ \begin{array}{l}x - 0 = \frac{4}{9}.2\\y - 0 = \frac{4}{9}.2\\z - 1 = \frac{4}{9}.1\end{array} \right.\)\( \Leftrightarrow \left\{ \begin{array}{l}x = \frac{8}{9}\\y = \frac{8}{9}\\z = \frac{{13}}{9}\end{array} \right.\)\( \Rightarrow H\left( {\frac{8}{9}\,;\frac{8}{9}\,;\frac{{13}}{9}} \right)\).

Mặt phẳng \(\left( \alpha \right)\) vuông góc với đường thẳng \(IA\) nên nhận \(\overrightarrow {IA} = \left( {2\,;2\,;1} \right)\) làm vectơ pháp tuyến. Hơn nữa mặt phẳng \(\left( \alpha \right)\) đi qua điểm \(H\).

Vậy \(\left( \alpha \right)\) có phương trình: \(2.\left( {x - \frac{8}{9}} \right) + 2.\left( {y - \frac{8}{9}} \right) + 1.\left( {z - \frac{{13}}{9}} \right) = 0\)\( \Leftrightarrow 2x + 2y + z - 5 = 0\).

Suy ra \(a + b + c = 5\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Đáp án đúng là: B

Đường thẳng \({d_1}\) đi qua điểm \({M_1}\left( {1;\, - 1;\,1} \right),\)có 1 vectơ chỉ phương \(\overrightarrow {{u_1}} = \left( {1;\,2;\, - 1} \right)\).

Đường thẳng \({d_2}\) đi qua điểm \({M_2}\left( { - 1;\,0;\,1} \right),\)có 1 vectơ chỉ phương \(\overrightarrow {{u_2}} = \left( { - 1;\,2;\,1} \right)\).

Mặt phẳng \(\left( P \right)\) chứa đường thẳng \({d_1}\) và song song với đường thẳng \({d_2}\) suy ra \(\left( P \right)\)đi qua điểm\({M_1}\left( {1;\, - 1;\,1} \right),\)có 1 vectơ pháp tuyến \(\overrightarrow n = \left[ {\overrightarrow {{u_1}} ,\overrightarrow {{u_2}} } \right] = \left( {4;\,0;\,4} \right)\).

Phương trình mặt phẳng \(\left( P \right)\): \(4\left( {x - 1} \right) + 0\left( {y + 1} \right) + 4\left( {z - 1} \right) = 0 \Leftrightarrow x + z - 2 = 0\).

Dễ thấy điểm \(Q\left( {0;\,1;\,2} \right) \in \left( P \right).\)

Lời giải

Trả lời: 0,24

Từ giả thiết ta có \(P\left( B \right) = 0,6 \Rightarrow P\left( {\overline B } \right) = 1 - 0,6 = 0,4;\,\,P\left( {A|B} \right) = 0,3;\,\,P\left( {A|\overline B } \right) = 0,15\).

Theo công thức xác suất từng phần, ta có :

\(P\left( A \right) = P\left( B \right)P\left( {A|B} \right) + P\left( {\overline B } \right)P\left( {A|\overline B } \right) = 0,6.0,3 + 0,4.0,15 = 0,24\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

a) Lượng khách tham quan được biểu diễn bởi hàm số \(Q\left( t \right) = {t^4} - 24{t^3} + 144{t^2}\).
Đúng
Sai
b) Sau 5 giờ lượng khách tham quan là \(1325\) người.
Đúng
Sai
c) Lượng khách tham quan lớn nhất là \(1296\) người.
Đúng
Sai
d) Tốc độ thay đổi lượng khách tham quan lớn nhất tại thời điểm \(t = 6\).
Đúng
Sai

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

A. \(P\left( A \right) = P\left( B \right).P\left( {\left. A \right|B} \right) + P\left( {\bar B} \right).P\left( {\left. A \right|\bar B} \right).\)              
B. \(P\left( A \right) = P\left( B \right).P\left( {\left. B \right|A} \right) + P\left( {\bar B} \right).P\left( {\left. B \right|\bar A} \right).\)    
C. \(P\left( A \right) = P\left( A \right).P\left( {\left. A \right|B} \right) + P\left( {\bar A} \right).P\left( {\left. A \right|\bar B} \right).\)              
D. \(P\left( A \right) = P\left( A \right).P\left( {\left. B \right|A} \right) + P\left( {\bar A} \right).P\left( {\left. B \right|\bar A} \right).\)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP