Câu hỏi:

18/12/2025 6 Lưu

Trong không gian \(Oxyz\), cho hai điểm \(A\left( {4; - 2;4} \right),B\left( { - 2;6;4} \right)\) và đường thẳng \(d:\left\{ \begin{array}{l}x = 5\\y = - 1\\z = t\end{array} \right.\). Gọi \(M\) là điểm di động thuộc mặt phẳng \(\left( {Oxy} \right)\) sao cho \(\widehat {AMB} = 90^\circ \)\(N\) là điểm di động thuộc \(d.\) Tìm giá trị nhỏ nhất của \(MN.\)

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Đáp án:

2

Trả lời: 2

Trong không gian \(Oxyz\), cho hai điểm \(A (ảnh 1)

\(\left( {Oxy} \right)\) có 1 vectơ pháp tuyến \(\overrightarrow k = \left( {0;0;1} \right)\).

\(d\) có 1 vectơ chỉ phương \(\overrightarrow u = \left( {0;0;1} \right)\). Nên \(d \bot \left( {Oxy} \right)\).

Gọi \(P = d \cap \left( {Oxy} \right) \Rightarrow P\left( {5; - 1;0} \right)\)

Gọi \(I\)là trung điểm \(AB\) \( \Rightarrow I\left( {1;2;4} \right)\).

\(\widehat {AMB} = 90^\circ \)\( \Rightarrow M\) thuộc mặt cầu \(\left( S \right)\) đường kính \(AB\), bán kính \(R = \frac{{AB}}{2} = \frac{{\sqrt {{{\left( { - 6} \right)}^2} + {8^2} + {0^2}} }}{2} = 5.\)

\(M \in \left( {Oxy} \right)\) nên \(M\) thuộc đường tròn \(\left( C \right)\) là giao của mặt cầu \(\left( S \right)\) và mặt phẳng \(\left( {Oxy} \right)\).

Gọi \(H\) là hình chiếu của \(I\) lên mặt phẳng \(\left( {Oxy} \right)\) \[ \Rightarrow H\left( {1;2;0} \right)\].

Suy ra \(M\) thuộc đường tròn \(\left( C \right)\) tâm \[H\left( {1;2;0} \right)\], bán kính \(r = \sqrt {{R^2} - I{H^2}} = \sqrt {25 - 16} = 3\).

Ta có: \(MN \ge MP \ge HP - r = \sqrt {16 + 9} - 3 = 2\).

Vậy \(M{N_{\min }} = 2\).

Dấu “=” xảy ra khi \(N \equiv P\)\(H,M,P\) thẳng hàng (\(M\) nằm giữa \(H,P\)).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Trả lời: 5,8

Xét phương trình hoành độ giao điểm \[\sqrt x - 2 = 0 \Leftrightarrow x = 4\].

Thể tích khối tròn xoay tạo thành là

\[V = {\rm{\pi }}\int\limits_4^9 {{{\left( {\sqrt x - 2} \right)}^2}{\rm{d}}x} = {\rm{\pi }}\int\limits_4^9 {\left( {x - 4\sqrt x + 4} \right){\rm{d}}x} = \left. {{\rm{\pi }}\left( {\frac{{{x^2}}}{2} - \frac{8}{3}x\sqrt x + 4x} \right)} \right|_4^9 = \frac{{11\pi }}{6} \approx 5,8\].

Lời giải

Đáp án đúng là: A

\(\int\limits_1^3 {f(x){\rm{d}}x} \, = \int\limits_1^2 {f(x){\rm{d}}x}  + \int\limits_2^3 {f(x){\rm{d}}x}  = 5 + ( - 2) = 3\,\).

Câu 3

a) \(F\left( 1 \right) - F\left( 0 \right) = - \frac{7}{2}\).
Đúng
Sai
b) Cho \(F\left( 0 \right) = 3\) thì khi đó \(F\left( 2 \right) = 5\).
Đúng
Sai
c) \(\int {f\left( x \right)} dx = \int {\left( {a{x^2} + bx + c} \right)dx} = \frac{a}{3}{x^3} + \frac{b}{2}{x^2} + cx\).
Đúng
Sai
d) \(a + b + 3c = - 12\).
Đúng
Sai

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

a) Đường thẳng \(d\) có vectơ chỉ phương là \(\overrightarrow u = \left( {2;1; - 2} \right)\).
Đúng
Sai
b) Đường thẳng \(d\) đi qua điểm \(A\left( {5; - 3; - 31} \right)\).
Đúng
Sai
c) Mặt phẳng \(\left( P \right)\) chứa \(I\left( {2;3; - 1} \right)\) và vuông góc với đường thẳng \(d\) có phương trình là \(2x + y - 2z - 9 = 0\).
Đúng
Sai
d) Mặt cầu \(\left( S \right)\) có phương trình là \({\left( {x - 2} \right)^2} + {\left( {y - 3} \right)^2} + {\left( {z + 1} \right)^2} = 225\).
Đúng
Sai

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

A. \(\overrightarrow {{n_3}} = \left( {1;2; - 1} \right)\).                      
B. \(\overrightarrow {{n_4}} = \left( {1;2;3} \right)\).         
C. \(\overrightarrow {{n_1}} = \left( {1;3; - 1} \right)\).      
D. \(\overrightarrow {{n_2}} = \left( {2;3; - 1} \right)\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

A. \(3x + y + 2z - 17 = 0\).                      
B. \(3x + y + 2z - 3 = 0\).    
C. \(5x + y + 2z - 5 = 0\).                        
D. \(5x + y + 2z - 25 = 0\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP