Công nghệ hỗ trợ trọng tài VAR (Video Assistant Referee) thiết lập một hệ tọa độ \(Oxyz\) để theo dõi vị trí của quả bóng M. Cho biết \[M\] đang nằm trên mặt sân có phương trình \(z = 0\), đồng thời thuộc mặt cầu \(\left( S \right):{\left( {x - 32} \right)^2} + {\left( {y - 50} \right)^2} + {\left( {z - 8} \right)^2} = 100\) (đơn vị độ dài tính theo mét). Tính khoảng cách từ vị trí \(M\) của quả bóng đến điểm \(J\) với \(J\) là hình chiếu vuông góc của tâm mặt cầu trên mặt sân.
Công nghệ hỗ trợ trọng tài VAR (Video Assistant Referee) thiết lập một hệ tọa độ \(Oxyz\) để theo dõi vị trí của quả bóng M. Cho biết \[M\] đang nằm trên mặt sân có phương trình \(z = 0\), đồng thời thuộc mặt cầu \(\left( S \right):{\left( {x - 32} \right)^2} + {\left( {y - 50} \right)^2} + {\left( {z - 8} \right)^2} = 100\) (đơn vị độ dài tính theo mét). Tính khoảng cách từ vị trí \(M\) của quả bóng đến điểm \(J\) với \(J\) là hình chiếu vuông góc của tâm mặt cầu trên mặt sân.
Quảng cáo
Trả lời:
Đáp án:
Trả lời: 6
Mặt cầu \(\left( S \right)\) có tâm là \(I\left( {32;50;8} \right)\) và \(R = 10\).
Vì \(J\) là hình chiếu của \(I\) trên mặt sân nên \(J\left( {32;50;0} \right)\).

Ta có tam giác \(IJM\) vuông tại \(J\).
Có \(IJ = \sqrt {{{\left( {32 - 32} \right)}^2} + {{\left( {50 - 50} \right)}^2} + {{\left( {0 - 8} \right)}^2}} = 8\).
Suy ra \(JM = \sqrt {{R^2} - I{J^2}} = \sqrt {{{10}^2} - {8^2}} = 6\).
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- 20 Bộ đề, Tổng ôn, sổ tay môn Toán (có đáp án chi tiết) ( 55.000₫ )
- 500 Bài tập tổng ôn môn Toán (Form 2025) ( 38.500₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Bộ đề thi tốt nghiệp 2025 các môn Toán, Lí, Hóa, Văn, Anh, Sinh, Sử, Địa, KTPL (có đáp án chi tiết) ( 36.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Trả lời: 5,8
Xét phương trình hoành độ giao điểm \[\sqrt x - 2 = 0 \Leftrightarrow x = 4\].
Thể tích khối tròn xoay tạo thành là
\[V = {\rm{\pi }}\int\limits_4^9 {{{\left( {\sqrt x - 2} \right)}^2}{\rm{d}}x} = {\rm{\pi }}\int\limits_4^9 {\left( {x - 4\sqrt x + 4} \right){\rm{d}}x} = \left. {{\rm{\pi }}\left( {\frac{{{x^2}}}{2} - \frac{8}{3}x\sqrt x + 4x} \right)} \right|_4^9 = \frac{{11\pi }}{6} \approx 5,8\].
Câu 2
Lời giải
a) Đ, b) S, c) S, d) S
a) \(\int\limits_0^1 {f\left( x \right)dx} = \left. {F\left( x \right)} \right|_0^1 = F\left( 1 \right) - F\left( 0 \right) = - \frac{7}{2}\).
b) \(\int\limits_0^2 {f\left( x \right)dx = \left. {F\left( x \right)} \right|_0^2 = F\left( 2 \right) - F\left( 0 \right) = - 2} \) mà \(F\left( 0 \right) = 3\) nên \(F\left( 2 \right) = 1\).
c) \(\int {f\left( x \right)} dx = \int {\left( {a{x^2} + bx + c} \right)dx} = \frac{a}{3}{x^3} + \frac{b}{2}{x^2} + cx + C\).
d) Vì \(\int\limits_0^1 {f\left( x \right)dx} = - \frac{7}{2}\) nên \(\frac{a}{3} + \frac{b}{2} + c = - \frac{7}{2}\) (1) và \(\int\limits_0^2 {f\left( x \right)dx = - 2} \) nên \(\frac{{8a}}{3} + 2b + 2c = - 2\) (2).
Từ (1) và (2), ta có
\( \Rightarrow \left\{ \begin{array}{l}2a + 3\left( {5 - 2a} \right) + 6c = - 21\\b = 5 - 2a\end{array} \right.\)\[ \Rightarrow \left\{ \begin{array}{l} - 2a + 3c = - 18\\b = 5 - 2a\end{array} \right.\]\[ \Rightarrow \left\{ \begin{array}{l}c = \frac{{ - 18 + 2a}}{3}\\b = 5 - 2a\end{array} \right.\].
Do đó \(a + b + 3c = a + 5 - 2a - 18 + 2a = a - 13\).
Câu 3
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 4
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 7
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
