Trong không gian \(Oxyz\), một viên đạn được bắn ra từ điểm \(A\left( {1;2;3} \right)\) và trong 3 giây, đầu đạn đi với vận tốc không đổi, vectơ vận tốc (trên giây) là \(\overrightarrow v = \left( {2;1;5} \right)\). Khi viên đạn trúng mục tiêu tại điểm \(B\left( {5;a;b} \right)\) thì giá trị của biểu thức \(b - a\) bằng bao nhiêu?
Trong không gian \(Oxyz\), một viên đạn được bắn ra từ điểm \(A\left( {1;2;3} \right)\) và trong 3 giây, đầu đạn đi với vận tốc không đổi, vectơ vận tốc (trên giây) là \(\overrightarrow v = \left( {2;1;5} \right)\). Khi viên đạn trúng mục tiêu tại điểm \(B\left( {5;a;b} \right)\) thì giá trị của biểu thức \(b - a\) bằng bao nhiêu?
Câu hỏi trong đề: Bộ 10 đề thi cuối kì 2 Toán 12 Cánh diều có đáp án !!
Quảng cáo
Trả lời:
Đáp án:
Trả lời: 9
Phương trình đường viên đạn đi là: \(\left\{ \begin{array}{l}x = 1 + 2t\\y = 2 + t\\z = 3 + 5t\end{array} \right.\).
Khi viên đạn trúng mục tiêu tại điểm \(B\left( {5;a;b} \right)\) nên \(1 + 2t = 5 \Leftrightarrow t = 2\).
Do đó tọa độ điểm B là \(B\left( {5;4;13} \right)\). Vậy \(b - a = 13 - 4 = 9\).
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- 250+ Công thức giải nhanh môn Toán 12 (chương trình mới) ( 18.000₫ )
- 20 Bộ đề, Tổng ôn, sổ tay môn Toán (có đáp án chi tiết) ( 55.000₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Tổng ôn lớp 12 môn Toán, Lí, Hóa, Văn, Anh, Sinh Sử, Địa, KTPL (Form 2025) ( 36.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1
Lời giải
Đáp án đúng là: B
Ta có \({M_1}\left( {0;5;0} \right)\) và \({M_2}\left( {2;0;4} \right)\). Suy ra \(\overrightarrow {{M_1}{M_2}} = \left( {2; - 5;4} \right)\).
Đường thẳng \({M_1}{M_2}\)nhận \(\overrightarrow {{M_1}{M_2}} = \overrightarrow {{u_3}} = \left( {2; - 5;4} \right)\) làm một vectơ chỉ phương.
Câu 2
Lời giải
Đáp án đúng là: D
Gọi \(A\) là biến cố “Sản phẩm đó do máy thứ nhất sản xuất”
B là biến cố “Sản phẩm đó đạt tiêu chuẩn”.
Theo đề ta có: \(P\left( A \right) = 0,6;P\left( {\overline A } \right) = 0,4\); \(P\left( {B|A} \right) = 0,9;P\left( {B|\overline A } \right) = 0,85\).
Ta có \(P\left( B \right) = P\left( A \right).P\left( {B|A} \right) + P\left( {\overline A } \right).P\left( {B|\overline A } \right)\)\( = 0,6.0,9 + 0,4.0,85 = 0,88\).
Ta có \(P\left( {A|B} \right) = \frac{{P\left( A \right).P\left( {B|A} \right)}}{{P\left( B \right)}} = \frac{{0,6.0,9}}{{0,88}} \approx 0,614\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.


