Câu hỏi:

18/12/2025 124 Lưu

Cho \(\left( P \right):y = {x^2} - 4x + 3\).

a) Trục đối xứng của đồ thị hàm số là đường thẳng \(x = 2\).

Đúng
Sai

b) Hàm số đồng biến trên khoảng \(\left( { - 3; + \infty } \right)\) và nghịch biến trên khoảng \(\left( { - \infty ; - 3} \right)\).

Đúng
Sai

c) Giá trị nhỏ nhất của hàm số là \( - 2\).

Đúng
Sai
d) \(\left( P \right)\) cắt \(Ox\) tại \(A,B\). Khi đó diện tích tam giác \(IAB\) bằng 1 với \(I\) là tọa độ đỉnh của \(\left( P \right)\).
Đúng
Sai

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

a) Trục đối xứng của đồ thị hàm số là đường thẳng \(x = - \frac{{ - 4}}{{2 \cdot 1}} = 2\).

b) Tọa độ đỉnh \(I\) của \(\left( P \right)\)\(\left\{ \begin{array}{l}x = - \frac{{ - 4}}{{2 \cdot 1}} = 2\\y = {2^2} - 4 \cdot 2 + 3 = - 1\end{array} \right.\)\( \Rightarrow I\left( {2; - 1} \right)\).

\(a = 1 > 0\) nên hàm số đồng biến trên khoảng \(\left( {2; + \infty } \right)\) và nghịch biến trên khoảng \(\left( { - \infty ;2} \right)\).

c) Vì \(a = 1 > 0\) nên giá trị nhỏ nhất của hàm số bằng −1.

d) Ta có \({x^2} - 4x + 3 = 0 \Leftrightarrow \left[ \begin{array}{l}x = 3\\x = 1\end{array} \right.\).

Suy ra \(\left( P \right)\) cắt trục \(Ox\) tại \(B\left( {3;0} \right),A\left( {1;0} \right)\).

Cho (P) : y = x^2 -4x + 3 . a) Trục đối xứng của đồ thị hàm số là đường thẳng  . (ảnh 1)

\({S_{IAB}} = \frac{1}{2}IH \cdot AB = \frac{1}{2} \cdot 1 \cdot 2 = 1\).

Đáp án: a) Đúng;     b) Sai;    c) Sai;     d) Đúng.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

A. \( - 1\).                         
B. \(2\).                             
C. \(7\).                              
D. \(8\).

Lời giải

Tọa độ đỉnh của parabol là \(I\left( {2; - 1} \right)\).

\(a = 1 > 0\) nên ta có bảng biến thiên như sau:

Tổng giá trị nhỏ nhất và giá trị lớn nhất của hàm số \(y = {x^2} - 4x + 3\) trên đoạn (ảnh 1)

Dựa vào bảng biến thiên, ta có giá trị lớn nhất của hàm số \(y = {x^2} - 4x + 3\) trên đoạn \(\left[ { - 1;4} \right]\) là 8, giá trị nhỏ nhất của hàm số \(y = {x^2} - 4x + 3\) trên đoạn \(\left[ { - 1;4} \right]\) là −1.

Vậy tổng giá trị lớn nhất và giá trị lớn nhất của hàm số \(y = {x^2} - 4x + 3\) trên đoạn \(\left[ { - 1;4} \right]\) 7. Chọn C.

Câu 2

a) Trục đối xứng của đồ thị là đường thẳng \(x = - 2\).

Đúng
Sai

b) Đỉnh \(I\) của đồ thị hàm số có tọa độ là \(\left( {2; - 2} \right)\).

Đúng
Sai

c) Đồ thị hàm số đi qua điểm \(A\left( {0;6} \right)\).

Đúng
Sai
d) Hàm số đã cho là \(y = 2{x^2} - 2x + 6\).
Đúng
Sai

Lời giải

a) Dựa vào đồ thị hàm số, ta có trục đối xứng của đồ thị là đường thẳng \(x = 2\).

b) Dựa vào đồ thị hàm số, đỉnh \(I\) của đồ thị hàm số có tọa độ là \(\left( {2; - 2} \right)\).

c) Đồ thị hàm số đi qua điểm \(A\left( {0;6} \right)\).

d) Gọi \(\left( P \right):y = a{x^2} + bx + c\).

Dựa vào đồ thị hàm số, ta có đồ thị hàm số đi qua các điểm \(\left( {1;0} \right),\left( {3;0} \right),\left( {2; - 2} \right)\) nên ta có hệ phương trình

\(\left\{ \begin{array}{l}a + b + c = 0\\9a + 3b + c = 0\\4a + 2b + c = - 2\end{array} \right.\)\( \Leftrightarrow \left\{ \begin{array}{l}a = 2\\b = - 8\\c = 6\end{array} \right.\).

Vậy \(\left( P \right):y = 2{x^2} - 8x + 6\).

Đáp án: a) Sai;     b) Đúng;    c) Đúng;     d) Sai.

Câu 4

a) Tọa độ đỉnh của \(\left( P \right)\)\(\left( { - 1;0} \right)\).

Đúng
Sai

b) Hàm số đã cho đồng biến trên khoảng \(\left( {0; + \infty } \right)\).

Đúng
Sai

c) Trong ba số \(a,b,c\) có đúng hai số dương.

Đúng
Sai
d) Giá trị lớn nhất của hàm số trên đoạn \(\left[ { - 2;1} \right]\) bằng 1.
Đúng
Sai

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

a) Trục đối xứng của parabol là trục tung.

Đúng
Sai

b) Parabol có bề lõm quay lên.

Đúng
Sai

c) \(f\left( 0 \right) < 0\).

Đúng
Sai
d) Tập nghiệm của bất phương trình \(f\left( x \right) < 0\)\(S = \left( { - 3;1} \right)\).
Đúng
Sai

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP