Chuồng I có 5 con gà mái, 2 con gà trống. Chuồng II có 3 con gà mái, 5 con gà trống. Bác Mai bắt một con gà trong số đó theo cách sau: Bác tung một con xúc xắc cân đối, đồng chất. Nếu số chấm chia hết cho 3 thì bác chọn chuồng I, nếu số chấm không chia hết cho 3 thì bác chọn chuồng II. Sau đó, từ chuồng đã chọn bác bắt ngẫu nhiên một con gà. Gọi P là xác suất để bác Mai bắt được con gà mái. Khi đó \(84P\) bằng bao nhiêu?
Chuồng I có 5 con gà mái, 2 con gà trống. Chuồng II có 3 con gà mái, 5 con gà trống. Bác Mai bắt một con gà trong số đó theo cách sau: Bác tung một con xúc xắc cân đối, đồng chất. Nếu số chấm chia hết cho 3 thì bác chọn chuồng I, nếu số chấm không chia hết cho 3 thì bác chọn chuồng II. Sau đó, từ chuồng đã chọn bác bắt ngẫu nhiên một con gà. Gọi P là xác suất để bác Mai bắt được con gà mái. Khi đó \(84P\) bằng bao nhiêu?
Câu hỏi trong đề: Bộ 10 đề thi cuối kì 2 Toán 12 Kết nối tri thức có đáp án !!
Quảng cáo
Trả lời:
Đáp án:
Trả lời: 41
Gọi A là biến cố “Chọn được chuồng I”,
B là biến cố “Chọn được con gà mái”.
Theo đề ta có \(P\left( A \right) = \frac{2}{6} = \frac{1}{3} \Rightarrow P\left( {\overline A } \right) = \frac{2}{3}\).
Ta có \(P\left( {B|A} \right) = \frac{5}{7};P\left( {B|\overline A } \right) = \frac{3}{8}\).
Khi đó xác suất để chọn được con gà mái là:
\(P = P\left( B \right) = P\left( A \right).P\left( {B|A} \right) + P\left( {\overline A } \right).P\left( {B|\overline A } \right) = \frac{1}{3}.\frac{5}{7} + \frac{2}{3}.\frac{3}{8} = \frac{{41}}{{84}}\).
Suy ra \(84P = 41\).
Hot: 1000+ Đề thi giữa kì 2 file word cấu trúc mới 2026 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- 250+ Công thức giải nhanh môn Toán 12 (chương trình mới) ( 18.000₫ )
- 20 Bộ đề, Tổng ôn, sổ tay môn Toán (có đáp án chi tiết) ( 55.000₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội, TP Hồ Chí Minh (2 cuốn) ( 150.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Trả lời: 0,4
Đường thẳng \(AB\) đi qua điểm \(A\left( {3; - 2;1} \right)\) và nhận \(\overrightarrow {AB} = \left( { - 1; - 3; - 1} \right)\) làm vectơ chỉ phương có phương trình là \(\left\{ \begin{array}{l}x = 3 - t\\y = - 2 - 3t\\z = 1 - t\end{array} \right.\).
Mặt cầu \(\left( S \right):{\left( {x - 2} \right)^2} + {\left( {y + 1} \right)^2} + {\left( {z + 1} \right)^2} = 16\) có tâm \(I\left( {2; - 1; - 1} \right)\).
Có \(\overrightarrow {IM} = \left( { - \frac{8}{9}; - \frac{{16}}{9};\frac{{16}}{9}} \right) = - \frac{8}{9}\left( {1;2; - 2} \right)\).
Mặt phẳng \(\left( P \right)\) đi qua \(M\left( {\frac{{10}}{9}; - \frac{{25}}{9};\frac{7}{9}} \right)\) nhận vectơ \(\overrightarrow n = \left( {1;2; - 2} \right)\) làm vectơ pháp tuyến có phương trình là \(x + 2y - 2z + 6 = 0\).
Giả sử H là giao điểm của \(AB\) và mặt phẳng \(\left( P \right)\) khi đó tọa độ H là nghiệm của hệ
\(\left\{ \begin{array}{l}x = 3 - t\\y = - 2 - 3t\\z = 1 - t\\x + 2y - 2z + 6 = 0\end{array} \right.\)\( \Leftrightarrow \left\{ \begin{array}{l}x = 3 - t\\y = - 2 - 3t\\z = 1 - t\\3 - t + 2\left( { - 2 - 3t} \right) - 2\left( {1 - t} \right) + 6 = 0\end{array} \right.\)
\( \Leftrightarrow \left\{ \begin{array}{l}x = 3 - t\\y = - 2 - 3t\\z = 1 - t\\5t = 3\end{array} \right.\)\( \Leftrightarrow \left\{ \begin{array}{l}x = \frac{{12}}{5}\\y = - \frac{{19}}{5}\\z = \frac{2}{5}\\t = \frac{3}{5}\end{array} \right.\). Suy ra \(H\left( {\frac{{12}}{5}; - \frac{{19}}{5};\frac{2}{5}} \right)\).
Vậy độ cao của máy bay khi đi xuyên qua đám mây để hạ cánh là 0,4 km.
Lời giải
Trả lời: 810
Phương trình đường cáp là: \(\left\{ \begin{array}{l}x = 10 + 2t\\y = 3 - 2t\\z = t\end{array} \right.\).
Vì cabin dừng ở điểm B có hoành độ \({x_B} = 550\) nên \(10 + 2t = 550 \Leftrightarrow t = 270\).
Do đó \(B\left( {550; - 537;270} \right)\).
Khi đó \(AB = \sqrt {{{\left( {550 - 10} \right)}^2} + {{\left( { - 537 - 3} \right)}^2} + {{270}^2}} = 810\)m.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 7
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

