Cho hàm số bậc hai \(f\left( x \right) = {x^2} - 2x - 8\).
Cho hàm số bậc hai \(f\left( x \right) = {x^2} - 2x - 8\).
a) Tập xác định của hàm số \(f\left( x \right)\) là \(D = \mathbb{R}\).
b) Đồ thị hàm số \(f\left( x \right)\) là parabol có đỉnh \(I\left( { - 1; - 9} \right)\).
c) Bất phương trình \(f\left( x \right) \le 0\) có đúng 7 nghiệm nguyên.
Câu hỏi trong đề: Bài tập ôn tập Toán 10 Cánh diều Chương 3 có đáp án !!
Quảng cáo
Trả lời:
a) Tập xác định của hàm số \(f\left( x \right)\) là \(D = \mathbb{R}\).
b) Tọa độ đỉnh của parabol là \(\left\{ \begin{array}{l}x = - \frac{{ - 2}}{{2 \cdot 1}} = 1\\y = {1^2} - 2 \cdot 1 - 8 = - 9\end{array} \right.\)\( \Rightarrow I\left( {1; - 9} \right)\).
c) Có \(f\left( x \right) \le 0\)\( \Leftrightarrow {x^2} - 2x - 8 \le 0 \Leftrightarrow - 2 \le x \le 4\).
Vì \(x \in \mathbb{Z}\) nên \(x \in \left\{ { - 2; - 1;0;1;2;3;4} \right\}\).
Vậy có 7 giá trị nguyên của \(x\).
d) \(f\left( x \right) = {x^2} - 2x - 8 > 0\)\( \Leftrightarrow \left[ \begin{array}{l}x < - 2\\x > 4\end{array} \right.\).
Vậy \(f\left( x \right) > 0\) khi \(x \in \left( { - \infty ; - 2} \right) \cup \left( {4; + \infty } \right)\) và \(f\left( x \right) < 0\) khi \(x \in \left( { - 2;4} \right)\).
Đáp án: a) Đúng; b) Sai; c) Đúng; d) Đúng.
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- Sách - Sổ tay kiến thức trọng tâm Vật lí 10 VietJack - Sách 2025 theo chương trình mới cho 2k9 ( 31.000₫ )
- Trọng tâm Toán, Văn, Anh 10 cho cả 3 bộ KNTT, CTST, CD VietJack - Sách 2025 ( 13.600₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1
Lời giải
Tọa độ đỉnh của parabol là \(I\left( {2; - 1} \right)\).
Vì \(a = 1 > 0\) nên ta có bảng biến thiên như sau:

Dựa vào bảng biến thiên, ta có giá trị lớn nhất của hàm số \(y = {x^2} - 4x + 3\) trên đoạn \(\left[ { - 1;4} \right]\) là 8, giá trị nhỏ nhất của hàm số \(y = {x^2} - 4x + 3\) trên đoạn \(\left[ { - 1;4} \right]\) là −1.
Vậy tổng giá trị lớn nhất và giá trị lớn nhất của hàm số \(y = {x^2} - 4x + 3\) trên đoạn \(\left[ { - 1;4} \right]\) là 7. Chọn C.
Câu 2
a) Trục đối xứng của đồ thị là đường thẳng \(x = - 2\).
b) Đỉnh \(I\) của đồ thị hàm số có tọa độ là \(\left( {2; - 2} \right)\).
c) Đồ thị hàm số đi qua điểm \(A\left( {0;6} \right)\).
Lời giải
a) Dựa vào đồ thị hàm số, ta có trục đối xứng của đồ thị là đường thẳng \(x = 2\).
b) Dựa vào đồ thị hàm số, đỉnh \(I\) của đồ thị hàm số có tọa độ là \(\left( {2; - 2} \right)\).
c) Đồ thị hàm số đi qua điểm \(A\left( {0;6} \right)\).
d) Gọi \(\left( P \right):y = a{x^2} + bx + c\).
Dựa vào đồ thị hàm số, ta có đồ thị hàm số đi qua các điểm \(\left( {1;0} \right),\left( {3;0} \right),\left( {2; - 2} \right)\) nên ta có hệ phương trình
\(\left\{ \begin{array}{l}a + b + c = 0\\9a + 3b + c = 0\\4a + 2b + c = - 2\end{array} \right.\)\( \Leftrightarrow \left\{ \begin{array}{l}a = 2\\b = - 8\\c = 6\end{array} \right.\).
Vậy \(\left( P \right):y = 2{x^2} - 8x + 6\).
Đáp án: a) Sai; b) Đúng; c) Đúng; d) Sai.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 4
a) Tọa độ đỉnh của \(\left( P \right)\) là \(\left( { - 1;0} \right)\).
b) Hàm số đã cho đồng biến trên khoảng \(\left( {0; + \infty } \right)\).
c) Trong ba số \(a,b,c\) có đúng hai số dương.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
a) Trục đối xứng của đồ thị hàm số là đường thẳng \(x = 2\).
b) Hàm số đồng biến trên khoảng \(\left( { - 3; + \infty } \right)\) và nghịch biến trên khoảng \(\left( { - \infty ; - 3} \right)\).
c) Giá trị nhỏ nhất của hàm số là \( - 2\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 7
a) Trục đối xứng của parabol là trục tung.
b) Parabol có bề lõm quay lên.
c) \(f\left( 0 \right) < 0\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.



