Câu hỏi:

18/12/2025 9 Lưu

Một chiếc cổng có hình dạng là một parabol. Biết khoảng cách giữa hai chân cổng bằng 162 m. Trên thành cổng, tại vị trí có độ cao 72 m so với mặt đất (điểm M), người ta thả một quả cầu sắt. Vị trí chạm đất của quả cầu cách chân chổng A một đoạn khoảng 17 m. Hãy tính độ cao của cổng theo đơn vị mét (tính từ mặt đất đến điểm cao nhất của cổng) (làm tròn đến hàng đơn vị).

Một chiếc cổng có hình dạng là một parabol. Biết khoảng cách giữa hai chân cổng bằng 162 m. Trên thành (ảnh 1)

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Đáp án:

192

Chọn hệ trục tọa độ như hình vẽ

Một chiếc cổng có hình dạng là một parabol. Biết khoảng cách giữa hai chân cổng bằng 162 m. Trên thành (ảnh 2)

Phương trình \(\left( P \right):y = - a{x^2} + h\left( {a > 0} \right)\).

\(\left( P \right)\) đi qua hai điểm \(M\left( { - 64;72} \right),A\left( { - 81;0} \right)\) nên ta có hệ phương trình

\(\left\{ \begin{array}{l} - 4096a + h = 72\\ - 6561a + h = 0\end{array} \right.\)\( \Leftrightarrow \left\{ \begin{array}{l}a = \frac{{72}}{{2465}}\\h \approx 192\end{array} \right.\).

Vậy chiều cao của cổng khoảng 192 m.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Bác An xây một chiếc cổng hình parabol và gắn cửa hình chữ nhật bên dưới cổng (như hình vẽ). (ảnh 2)

Gắn hệ trục tọa độ \(Oxy\) như hình vẽ, chiếc cổng là 1 phần của parabol \(\left( P \right):y = a{x^2} + bx + c\) với \(a < 0\).

Khi đó \(\left( P \right)\) nhận \(x = 0\) làm trục đối xứng và đi qua điểm \(G\left( {0;3} \right),E\left( {\frac{3}{2};2} \right)\).

Khi đó ta có hệ phương trình \(\left\{ \begin{array}{l} - \frac{b}{{2a}} = 0\\c = 3\\\frac{9}{4}a + \frac{3}{2}b + c = 2\end{array} \right.\)\( \Leftrightarrow \left\{ \begin{array}{l}a = - \frac{4}{9}\\b = 0\\c = 3\end{array} \right.\).

Vậy \(\left( P \right):y = - \frac{4}{9}{x^2} + 3\).

Cho \(y = 0\)\( \Rightarrow - \frac{4}{9}{x^2} + 3 = 0 \Leftrightarrow \left[ \begin{array}{l}x = \frac{{3\sqrt 3 }}{2}\\x = - \frac{{3\sqrt 3 }}{2}\end{array} \right.\).

Vậy khoảng cách giữa hai chân cổng là \(3\sqrt 3 \) m.

Câu 2

A. Hàm số nghịch biến trên đoạn \(\left[ { - 3;1} \right]\).                                     

B. Hàm số nghịch biến trên đoạn \(\left[ {1;3} \right]\).    

C. Hàm số đồng biến trên đoạn \(\left[ {1;3} \right]\).                                        
D. Hàm số đồng biến trên đoạn \(\left[ { - 2;1} \right]\).

Lời giải

Dựa vào đồ thị ta có hàm số đồng biến trên đoạn \(\left[ {1;3} \right]\). Chọn C.

Câu 3

A. \( - 1\).                         
B. \(2\).                             
C. \(7\).                              
D. \(8\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

a) \(f\left( 2 \right) = - 2\).

Đúng
Sai

b) \(f\left( 0 \right) < 0\).

Đúng
Sai

c) Hàm số \(y = f\left( x \right)\) nghịch biến trên khoảng \(\left( { - 2;3} \right)\).

Đúng
Sai
d) Hàm số \(y = f\left( x \right)\) đồng biến trên khoảng \(\left( { - 3; - 2} \right)\).
Đúng
Sai

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

a) Trục đối xứng của đồ thị là đường thẳng \(x = - 2\).

Đúng
Sai

b) Đỉnh \(I\) của đồ thị hàm số có tọa độ là \(\left( {2; - 2} \right)\).

Đúng
Sai

c) Đồ thị hàm số đi qua điểm \(A\left( {0;6} \right)\).

Đúng
Sai
d) Hàm số đã cho là \(y = 2{x^2} - 2x + 6\).
Đúng
Sai

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

a) Trục đối xứng của \(\left( P \right)\) có phương trình là \(x = \frac{4}{3}\).

Đúng
Sai

b) \(\left( P \right)\) đi qua điểm \(A\left( {5; - 49} \right)\).

Đúng
Sai

c) \(\left( P \right)\) cắt trục tung tại điểm có tung độ bằng \( - 6\).

Đúng
Sai
d) \(\left( P \right)\) có đỉnh là \(I\left( {\frac{2}{3};\frac{{22}}{3}} \right)\).
Đúng
Sai

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP