Trong một buổi thử nghiệm vũ khí người ta bắn một quả tên lửa lên cao theo quỹ đạo xác định trước có phương trình là \(y = - \frac{{9,8}}{{300}}{x^2} + x\), trong đó \(x\) là thời gian kể từ thời điểm bắn tên lửa (giây) và \(y\) là độ cao của tên lửa so với mặt đất (mét).
a) Tính độ cao của tên lửa tại thời điểm \(x = 10\) giây.
b) Tính độ cao lớn nhất của quả tên lửa trong quá trình bay.
Trong một buổi thử nghiệm vũ khí người ta bắn một quả tên lửa lên cao theo quỹ đạo xác định trước có phương trình là \(y = - \frac{{9,8}}{{300}}{x^2} + x\), trong đó \(x\) là thời gian kể từ thời điểm bắn tên lửa (giây) và \(y\) là độ cao của tên lửa so với mặt đất (mét).
a) Tính độ cao của tên lửa tại thời điểm \(x = 10\) giây.
b) Tính độ cao lớn nhất của quả tên lửa trong quá trình bay.
Câu hỏi trong đề: Bài tập ôn tập Toán 10 Cánh diều Chương 3 có đáp án !!
Quảng cáo
Trả lời:
a) \(y\left( {10} \right) = - \frac{{9,8}}{{300}} \cdot {10^2} + 10 = \frac{{101}}{{15}}\) (m).
b) Tọa độ đỉnh của quỹ đạo là \(I\left( {\frac{{750}}{{49}};\frac{{375}}{{49}}} \right)\).
Vì \(a = - \frac{{9,8}}{{300}} < 0\) nên độ cao lớn nhất của quả tên lửa trong quá trình bay là \(\frac{{375}}{{49}}\) m.
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- Trọng tâm Toán, Văn, Anh 10 cho cả 3 bộ KNTT, CTST, CD VietJack - Sách 2025 ( 13.600₫ )
- Trọng tâm Lí, Hóa, Sinh 10 cho cả 3 bộ KNTT, CTST và CD VietJack - Sách 2025 ( 40.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Gắn hệ trục tọa độ \(Oxy\) như hình vẽ, chiếc cổng là 1 phần của parabol \(\left( P \right):y = a{x^2} + bx + c\) với \(a < 0\).
Khi đó \(\left( P \right)\) nhận \(x = 0\) làm trục đối xứng và đi qua điểm \(G\left( {0;3} \right),E\left( {\frac{3}{2};2} \right)\).
Khi đó ta có hệ phương trình \(\left\{ \begin{array}{l} - \frac{b}{{2a}} = 0\\c = 3\\\frac{9}{4}a + \frac{3}{2}b + c = 2\end{array} \right.\)\( \Leftrightarrow \left\{ \begin{array}{l}a = - \frac{4}{9}\\b = 0\\c = 3\end{array} \right.\).
Vậy \(\left( P \right):y = - \frac{4}{9}{x^2} + 3\).
Cho \(y = 0\)\( \Rightarrow - \frac{4}{9}{x^2} + 3 = 0 \Leftrightarrow \left[ \begin{array}{l}x = \frac{{3\sqrt 3 }}{2}\\x = - \frac{{3\sqrt 3 }}{2}\end{array} \right.\).
Vậy khoảng cách giữa hai chân cổng là \(3\sqrt 3 \) m.
Câu 2
A. Hàm số nghịch biến trên đoạn \(\left[ { - 3;1} \right]\).
B. Hàm số nghịch biến trên đoạn \(\left[ {1;3} \right]\).
Lời giải
Dựa vào đồ thị ta có hàm số đồng biến trên đoạn \(\left[ {1;3} \right]\). Chọn C.
Câu 3
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 4
a) \(f\left( 2 \right) = - 2\).
b) \(f\left( 0 \right) < 0\).
c) Hàm số \(y = f\left( x \right)\) nghịch biến trên khoảng \(\left( { - 2;3} \right)\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
a) Trục đối xứng của đồ thị là đường thẳng \(x = - 2\).
b) Đỉnh \(I\) của đồ thị hàm số có tọa độ là \(\left( {2; - 2} \right)\).
c) Đồ thị hàm số đi qua điểm \(A\left( {0;6} \right)\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
a) Trục đối xứng của \(\left( P \right)\) có phương trình là \(x = \frac{4}{3}\).
b) \(\left( P \right)\) đi qua điểm \(A\left( {5; - 49} \right)\).
c) \(\left( P \right)\) cắt trục tung tại điểm có tung độ bằng \( - 6\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.


![Cho hàm số \(y = f (x) có đồ thị trên đoạn [ { - 4;4} \right]\) như hình vẽ. (ảnh 1)](https://video.vietjack.com/upload2/quiz_source1/2025/12/blobid7-1766070563.png)
