Bác An xây một chiếc cổng hình parabol và gắn cửa hình chữ nhật bên dưới cổng (như hình vẽ). Biết chiều cao của cổng là 3 m và biết cánh cửa có chiều cao 2m, chiều rộng 3 m. Hãy tính khoảng cách giữa 2 chân cổng (tức là tính độ dài \(AB\)).
Bác An xây một chiếc cổng hình parabol và gắn cửa hình chữ nhật bên dưới cổng (như hình vẽ). Biết chiều cao của cổng là 3 m và biết cánh cửa có chiều cao 2m, chiều rộng 3 m. Hãy tính khoảng cách giữa 2 chân cổng (tức là tính độ dài \(AB\)).

Câu hỏi trong đề: Bài tập ôn tập Toán 10 Cánh diều Chương 3 có đáp án !!
Quảng cáo
Trả lời:
Gắn hệ trục tọa độ \(Oxy\) như hình vẽ, chiếc cổng là 1 phần của parabol \(\left( P \right):y = a{x^2} + bx + c\) với \(a < 0\).
Khi đó \(\left( P \right)\) nhận \(x = 0\) làm trục đối xứng và đi qua điểm \(G\left( {0;3} \right),E\left( {\frac{3}{2};2} \right)\).
Khi đó ta có hệ phương trình \(\left\{ \begin{array}{l} - \frac{b}{{2a}} = 0\\c = 3\\\frac{9}{4}a + \frac{3}{2}b + c = 2\end{array} \right.\)\( \Leftrightarrow \left\{ \begin{array}{l}a = - \frac{4}{9}\\b = 0\\c = 3\end{array} \right.\).
Vậy \(\left( P \right):y = - \frac{4}{9}{x^2} + 3\).
Cho \(y = 0\)\( \Rightarrow - \frac{4}{9}{x^2} + 3 = 0 \Leftrightarrow \left[ \begin{array}{l}x = \frac{{3\sqrt 3 }}{2}\\x = - \frac{{3\sqrt 3 }}{2}\end{array} \right.\).
Vậy khoảng cách giữa hai chân cổng là \(3\sqrt 3 \) m.
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- Trọng tâm Lí, Hóa, Sinh 10 cho cả 3 bộ KNTT, CTST và CD VietJack - Sách 2025 ( 40.000₫ )
- Sách - Sổ tay kiến thức trọng tâm Vật lí 10 VietJack - Sách 2025 theo chương trình mới cho 2k9 ( 31.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1
A. Hàm số nghịch biến trên đoạn \(\left[ { - 3;1} \right]\).
B. Hàm số nghịch biến trên đoạn \(\left[ {1;3} \right]\).
Lời giải
Dựa vào đồ thị ta có hàm số đồng biến trên đoạn \(\left[ {1;3} \right]\). Chọn C.
Câu 2
Lời giải
Tọa độ đỉnh của parabol là \(I\left( {2; - 1} \right)\).
Vì \(a = 1 > 0\) nên ta có bảng biến thiên như sau:

Dựa vào bảng biến thiên, ta có giá trị lớn nhất của hàm số \(y = {x^2} - 4x + 3\) trên đoạn \(\left[ { - 1;4} \right]\) là 8, giá trị nhỏ nhất của hàm số \(y = {x^2} - 4x + 3\) trên đoạn \(\left[ { - 1;4} \right]\) là −1.
Vậy tổng giá trị lớn nhất và giá trị lớn nhất của hàm số \(y = {x^2} - 4x + 3\) trên đoạn \(\left[ { - 1;4} \right]\) là 7. Chọn C.
Câu 3
a) \(f\left( 2 \right) = - 2\).
b) \(f\left( 0 \right) < 0\).
c) Hàm số \(y = f\left( x \right)\) nghịch biến trên khoảng \(\left( { - 2;3} \right)\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 4
a) Trục đối xứng của đồ thị là đường thẳng \(x = - 2\).
b) Đỉnh \(I\) của đồ thị hàm số có tọa độ là \(\left( {2; - 2} \right)\).
c) Đồ thị hàm số đi qua điểm \(A\left( {0;6} \right)\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
a) Trục đối xứng của \(\left( P \right)\) có phương trình là \(x = \frac{4}{3}\).
b) \(\left( P \right)\) đi qua điểm \(A\left( {5; - 49} \right)\).
c) \(\left( P \right)\) cắt trục tung tại điểm có tung độ bằng \( - 6\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

![Cho hàm số \(y = f (x) có đồ thị trên đoạn [ { - 4;4} \right]\) như hình vẽ. (ảnh 1)](https://video.vietjack.com/upload2/quiz_source1/2025/12/blobid7-1766070563.png)
