Câu hỏi:

18/12/2025 7 Lưu

Một tấm sắt hình chữ nhật có chu vi là 48 cm. Người ta cắt ở mỗi góc tấm sắt một hình vuông cạnh là 2 cm như hình vẽ.

Một tấm sắt hình chữ nhật có chu vi là 48 cm. Người ta cắt ở mỗi góc tấm sắt một hình vuông cạnh là 2 cm như hình vẽ. (ảnh 1)

Tìm chiều dài của tấm sắt sao cho diện tích phần còn lại của tấm sắt ít nhất bằng 92 cm2.

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Nửa chu vi tấm sắt là \(48:2 = 24\) (cm).

Gọi chiều dài của tấm sắt là \(x\left( {{\rm{cm}}} \right)\).

Chiều rộng của tấm sắt là \(24 - x\) (cm).

Vì chiều dài lớn hơn chiều rộng nên ta có \(\left\{ \begin{array}{l}x > 24 - x\\x < 24\end{array} \right. \Leftrightarrow 12 < x < 24\) (1).

Diện tích phần còn lại của tấm sắt là \(x\left( {24 - x} \right) - 4 \cdot 4\) (cm2).

Để diện tích phần còn lại của tấm sắt ít nhất bằng 92 cm2 thì \(x\left( {24 - x} \right) - 4 \cdot 4 \ge 92\)\( \Leftrightarrow - {x^2} + 24x - 108 \ge 0\)\( \Leftrightarrow 6 \le x \le 18\) (2).

Từ (1) và (2), suy ra \(12 < x \le 18\).

Vậy tấm sắt có chiều dài thuộc nửa khoảng \(\left( {12;18} \right]\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Bác An xây một chiếc cổng hình parabol và gắn cửa hình chữ nhật bên dưới cổng (như hình vẽ). (ảnh 2)

Gắn hệ trục tọa độ \(Oxy\) như hình vẽ, chiếc cổng là 1 phần của parabol \(\left( P \right):y = a{x^2} + bx + c\) với \(a < 0\).

Khi đó \(\left( P \right)\) nhận \(x = 0\) làm trục đối xứng và đi qua điểm \(G\left( {0;3} \right),E\left( {\frac{3}{2};2} \right)\).

Khi đó ta có hệ phương trình \(\left\{ \begin{array}{l} - \frac{b}{{2a}} = 0\\c = 3\\\frac{9}{4}a + \frac{3}{2}b + c = 2\end{array} \right.\)\( \Leftrightarrow \left\{ \begin{array}{l}a = - \frac{4}{9}\\b = 0\\c = 3\end{array} \right.\).

Vậy \(\left( P \right):y = - \frac{4}{9}{x^2} + 3\).

Cho \(y = 0\)\( \Rightarrow - \frac{4}{9}{x^2} + 3 = 0 \Leftrightarrow \left[ \begin{array}{l}x = \frac{{3\sqrt 3 }}{2}\\x = - \frac{{3\sqrt 3 }}{2}\end{array} \right.\).

Vậy khoảng cách giữa hai chân cổng là \(3\sqrt 3 \) m.

Câu 2

A. Hàm số nghịch biến trên đoạn \(\left[ { - 3;1} \right]\).                                     

B. Hàm số nghịch biến trên đoạn \(\left[ {1;3} \right]\).    

C. Hàm số đồng biến trên đoạn \(\left[ {1;3} \right]\).                                        
D. Hàm số đồng biến trên đoạn \(\left[ { - 2;1} \right]\).

Lời giải

Dựa vào đồ thị ta có hàm số đồng biến trên đoạn \(\left[ {1;3} \right]\). Chọn C.

Câu 3

A. \( - 1\).                         
B. \(2\).                             
C. \(7\).                              
D. \(8\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

a) \(f\left( 2 \right) = - 2\).

Đúng
Sai

b) \(f\left( 0 \right) < 0\).

Đúng
Sai

c) Hàm số \(y = f\left( x \right)\) nghịch biến trên khoảng \(\left( { - 2;3} \right)\).

Đúng
Sai
d) Hàm số \(y = f\left( x \right)\) đồng biến trên khoảng \(\left( { - 3; - 2} \right)\).
Đúng
Sai

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

a) Trục đối xứng của đồ thị là đường thẳng \(x = - 2\).

Đúng
Sai

b) Đỉnh \(I\) của đồ thị hàm số có tọa độ là \(\left( {2; - 2} \right)\).

Đúng
Sai

c) Đồ thị hàm số đi qua điểm \(A\left( {0;6} \right)\).

Đúng
Sai
d) Hàm số đã cho là \(y = 2{x^2} - 2x + 6\).
Đúng
Sai

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

a) Trục đối xứng của \(\left( P \right)\) có phương trình là \(x = \frac{4}{3}\).

Đúng
Sai

b) \(\left( P \right)\) đi qua điểm \(A\left( {5; - 49} \right)\).

Đúng
Sai

c) \(\left( P \right)\) cắt trục tung tại điểm có tung độ bằng \( - 6\).

Đúng
Sai
d) \(\left( P \right)\) có đỉnh là \(I\left( {\frac{2}{3};\frac{{22}}{3}} \right)\).
Đúng
Sai

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP