Câu hỏi:

18/12/2025 293 Lưu

Cho hàm số \(y = a{x^2} + bx + 2\) với \(a \ne 0\), có đồ thị là \(\left( P \right)\). Biết \(\left( P \right)\) có đỉnh là điểm \(S\left( { - 1; - \frac{3}{2}} \right)\). Tính \(2a + b\).

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Đáp án:

14

Theo đề ta có \(\left\{ \begin{array}{l}x = - \frac{b}{{2a}} = - 1\\y\left( { - 1} \right) = - \frac{3}{2}\end{array} \right.\)\( \Leftrightarrow \left\{ \begin{array}{l}b = 2a\\a - b + 2 = - \frac{3}{2}\end{array} \right.\)\( \Leftrightarrow \left\{ \begin{array}{l}a = \frac{7}{2}\\b = 7\end{array} \right.\).

Suy ra \(2a + b = 14\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

A. \(S = \left( { - \infty ; - 2} \right) \cup \left( {3; + \infty } \right)\).              

B. \(S = \left( { - 2;3} \right)\).      

C. \(S = \left[ { - 2;3} \right]\).                                                                             
D. \(S = \left( { - \infty ; - 2} \right] \cup \left[ {3; + \infty } \right)\).

Lời giải

Dựa vào bảng xét dấu, ta có \(f\left( x \right) \le 0\)\( \Leftrightarrow x \in \left( { - \infty ; - 2} \right] \cup \left[ {3; + \infty } \right)\).

Vậy tập nghiệm của bất phương trình là \(S = \left( { - \infty ; - 2} \right] \cup \left[ {3; + \infty } \right)\). Chọn D.

Câu 3

a) \(f\left( {\frac{3}{2}} \right) = f\left( {\sqrt 5 } \right)\).

Đúng
Sai

b) Điểm \(A\left( {0;0} \right)\) thuộc đồ thị hàm số.

Đúng
Sai

c) Hàm số đồng biến trên khoảng \(\left( {0;2} \right)\).

Đúng
Sai
d) Tập giá trị của hàm số là \(\left[ {4; + \infty } \right)\).
Đúng
Sai

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

a) Cả ba số \(a,b,c\) đều dương.

Đúng
Sai

b) \(f\left( x \right) \ge m,\forall x \in \mathbb{R}\)\( \Leftrightarrow m \le - 4\).

Đúng
Sai

c) \(f\left( x \right) \ge 0,\forall x \in \left[ { - 1;3} \right]\).

Đúng
Sai
d) Phương trình \(a{x^2} + bx + c = 0\) có hai nghiệm phân biệt \({x_1};{x_2}\) thỏa mãn \(x_1^2 + x_2^2 = 10\).
Đúng
Sai

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

A. \(S = 3\).                       
B. \(S = - 5\).                    
C. \(S = 4\).                       
D. \(S = 1\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

A. Hàm số đồng biến trên khoảng \(\left( { - 3;1} \right)\)\(\left( {1;4} \right)\).    

B. Đồ thị cắt trục hoành tại 3 điểm phân biệt.           

C. Hàm số đồng biến trên khoảng \(\left( { - 3; - 1} \right)\)\(\left( {1;3} \right)\).    

D. Hàm số nghịch biến trên khoảng \(\left( { - 2;1} \right)\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP