Câu hỏi:

19/12/2025 3 Lưu

Một hộp chứa 5 quả bóng: 2 quả màu đỏ (đánh số 1 và 2), 2 quả màu xanh (đánh số 3 và 4) và 1 quả màu vàng (đánh số 5). Lấy ngẫu nhiên 2 quả bóng liên tiếp không hoàn lại. Xét các biến cố:

\(A\): "Quả bóng lấy ra đầu tiên có màu đỏ"

\(B\): "Tổng số của hai quả bóng lấy ra là số lẻ"

Xác định \[B|A\] là biến cố \(B\) khi biết \(A\) đã xảy ra.

A. \[B|A{\rm{ }} = {\rm{ }}\left\{ {\left( {1,2} \right);\left( {1,4} \right);\left( {2,1} \right);\left( {2,3} \right);\left( {2,5} \right)} \right\}\]. 
B. \[B|A{\rm{ }} = {\rm{ }}\left\{ {\left( {1,2} \right);\left( {1,4} \right);\left( {2,1} \right);\left( {2,3} \right)} \right\}\].    
C. \[B|A{\rm{ }} = {\rm{ }}\left\{ {\left( {1,3} \right);\left( {1,5} \right);\left( {2,3} \right);\left( {2,5} \right)} \right\}\].    
D. \[B|A{\rm{ }} = {\rm{ }}\left\{ {\left( {1,3} \right);\left( {1,5} \right);\left( {2,1} \right);\left( {2,3} \right);\left( {2,5} \right)} \right\}\].

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Đáp án đúng là: A

Khi \(A\) đã xảy ra, nghĩa là quả bóng đầu tiên lấy ra có màu đỏ (số 1 hoặc 2).

Do đó, không gian mẫu mới là

\[\Omega ' = A = \left\{ {\left( {1,2} \right);\left( {1,3} \right);\left( {1,4} \right);\left( {1,5} \right);\left( {2,1} \right);\left( {2,3} \right);\left( {2,4} \right);\left( {2,5} \right)} \right\}\].

Biến cố \(B\) khi biết \(A\) đã xảy ra là \[B|A = \left\{ {\left( {1,2} \right);\left( {1,4} \right);\left( {2,1} \right);\left( {2,3} \right);\left( {2,5} \right)} \right\}\].

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Trả lời: 1,3

Ta có \(\int\limits_{ - 2}^3 {f'\left( x \right)dx} = \int\limits_{ - 2}^1 {f'\left( x \right)dx} + \int\limits_1^3 {f'\left( x \right)dx} = 3 - \int\limits_1^3 {\left| {f'\left( x \right)} \right|dx} \)\( = 3 - \frac{5}{3} = \frac{4}{3}\).

\(\int\limits_{ - 2}^3 {f'\left( x \right)dx} = \left. {f\left( x \right)} \right|_{ - 2}^3 = f\left( 3 \right) - f\left( { - 2} \right)\).

Do đó \(f\left( 3 \right) - f\left( { - 2} \right) \approx 1,3\).

Lời giải

Trả lời: 4

Ta có \(F\left( x \right) = \int {\left( {3{x^2} + \frac{1}{{2x + 1}}} \right)} dx = {x^3} + \frac{1}{2}\ln \left| {2x + 1} \right| + C\).

\(F\left( 0 \right) = 0\) nên \(C = 0\).

Do đó \(F\left( x \right) = {x^3} + \frac{1}{2}\ln \left| {2x + 1} \right|\). Suy ra \(F\left( 1 \right) = {1^3} + \frac{1}{2}\ln \left| {2.1 + 1} \right| = 1 + \frac{1}{2}\ln 3\).

Do đó \(a + b + c = 1 + 1 + 2 = 4\).

Câu 6

A. \(\frac{{{\pi ^2}}}{4}\).                      
B. \(\frac{{{\pi ^2}}}{2}\).                   
C. \(\frac{\pi }{2}\).                          
D. \(\frac{\pi }{4}\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP