Một hộp chứa 5 quả bóng: 2 quả màu đỏ (đánh số 1 và 2), 2 quả màu xanh (đánh số 3 và 4) và 1 quả màu vàng (đánh số 5). Lấy ngẫu nhiên 2 quả bóng liên tiếp không hoàn lại. Xét các biến cố:
\(A\): "Quả bóng lấy ra đầu tiên có màu đỏ"
\(B\): "Tổng số của hai quả bóng lấy ra là số lẻ"
Xác định \[B|A\] là biến cố \(B\) khi biết \(A\) đã xảy ra.
Một hộp chứa 5 quả bóng: 2 quả màu đỏ (đánh số 1 và 2), 2 quả màu xanh (đánh số 3 và 4) và 1 quả màu vàng (đánh số 5). Lấy ngẫu nhiên 2 quả bóng liên tiếp không hoàn lại. Xét các biến cố:
\(A\): "Quả bóng lấy ra đầu tiên có màu đỏ"
\(B\): "Tổng số của hai quả bóng lấy ra là số lẻ"
Xác định \[B|A\] là biến cố \(B\) khi biết \(A\) đã xảy ra.
Quảng cáo
Trả lời:
Đáp án đúng là: A
Khi \(A\) đã xảy ra, nghĩa là quả bóng đầu tiên lấy ra có màu đỏ (số 1 hoặc 2).
Do đó, không gian mẫu mới là
\[\Omega ' = A = \left\{ {\left( {1,2} \right);\left( {1,3} \right);\left( {1,4} \right);\left( {1,5} \right);\left( {2,1} \right);\left( {2,3} \right);\left( {2,4} \right);\left( {2,5} \right)} \right\}\].
Biến cố \(B\) khi biết \(A\) đã xảy ra là \[B|A = \left\{ {\left( {1,2} \right);\left( {1,4} \right);\left( {2,1} \right);\left( {2,3} \right);\left( {2,5} \right)} \right\}\].
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- 20 Bộ đề, Tổng ôn, sổ tay môn Toán (có đáp án chi tiết) ( 55.000₫ )
- 500 Bài tập tổng ôn môn Toán (Form 2025) ( 38.500₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Bộ đề thi tốt nghiệp 2025 các môn Toán, Lí, Hóa, Văn, Anh, Sinh, Sử, Địa, KTPL (có đáp án chi tiết) ( 36.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Trả lời: 1,3
Ta có \(\int\limits_{ - 2}^3 {f'\left( x \right)dx} = \int\limits_{ - 2}^1 {f'\left( x \right)dx} + \int\limits_1^3 {f'\left( x \right)dx} = 3 - \int\limits_1^3 {\left| {f'\left( x \right)} \right|dx} \)\( = 3 - \frac{5}{3} = \frac{4}{3}\).
Mà \(\int\limits_{ - 2}^3 {f'\left( x \right)dx} = \left. {f\left( x \right)} \right|_{ - 2}^3 = f\left( 3 \right) - f\left( { - 2} \right)\).
Do đó \(f\left( 3 \right) - f\left( { - 2} \right) \approx 1,3\).
Lời giải
Trả lời: 4
Ta có \(F\left( x \right) = \int {\left( {3{x^2} + \frac{1}{{2x + 1}}} \right)} dx = {x^3} + \frac{1}{2}\ln \left| {2x + 1} \right| + C\).
Vì \(F\left( 0 \right) = 0\) nên \(C = 0\).
Do đó \(F\left( x \right) = {x^3} + \frac{1}{2}\ln \left| {2x + 1} \right|\). Suy ra \(F\left( 1 \right) = {1^3} + \frac{1}{2}\ln \left| {2.1 + 1} \right| = 1 + \frac{1}{2}\ln 3\).
Do đó \(a + b + c = 1 + 1 + 2 = 4\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
