Khi gắn hệ tọa độ \(Oxyz\) (đơn vị trên mỗi trục tính theo kilômét) vào một sân bay, mặt phẳng \(\left( {Oxy} \right)\) trùng với mặt sân bay. Một máy bay bay theo đường thẳng từ vị trí \(A\left( {5;\,0;\,5} \right)\) đến vị trí \(B\left( {10;\,10;\,3} \right)\) và hạ cánh tại vị trí \(M\left( {a;\,b;\,0} \right)\). Giá trị của \(a + b\) bằng bao nhiêu (viết kết quả dưới dạng số thập phân)?
Khi gắn hệ tọa độ \(Oxyz\) (đơn vị trên mỗi trục tính theo kilômét) vào một sân bay, mặt phẳng \(\left( {Oxy} \right)\) trùng với mặt sân bay. Một máy bay bay theo đường thẳng từ vị trí \(A\left( {5;\,0;\,5} \right)\) đến vị trí \(B\left( {10;\,10;\,3} \right)\) và hạ cánh tại vị trí \(M\left( {a;\,b;\,0} \right)\). Giá trị của \(a + b\) bằng bao nhiêu (viết kết quả dưới dạng số thập phân)?
Quảng cáo
Trả lời:
Đáp án:
Trả lời: 42,5
Phương trình đường thẳng \(AB\) là:\(\frac{{x - 5}}{5} = \frac{y}{{10}} = \frac{{z - 5}}{{ - 2}}\).
Vì \(M\)thuộc \(AB\) nên tồn tại số thực \(t\) sao cho\[M(5t + 5;\,10t;\, - 2t + 5)\].
Ngoài ra, \(M\)thuộc mặt phẳng \(\left( {Oxy} \right)\) nên \( - 2t + 5 = 0 \Leftrightarrow t = \frac{5}{2}\). Suy ra \(M(17,5;\,25;\,0)\).
Vậy\(a + b = 17,5 + 25 = 42,5\).
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- 20 Bộ đề, Tổng ôn, sổ tay môn Toán (có đáp án chi tiết) ( 55.000₫ )
- 500 Bài tập tổng ôn môn Toán (Form 2025) ( 38.500₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Bộ đề thi tốt nghiệp 2025 các môn Toán, Lí, Hóa, Văn, Anh, Sinh, Sử, Địa, KTPL (có đáp án chi tiết) ( 36.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Trả lời: 1,3
Ta có \(\int\limits_{ - 2}^3 {f'\left( x \right)dx} = \int\limits_{ - 2}^1 {f'\left( x \right)dx} + \int\limits_1^3 {f'\left( x \right)dx} = 3 - \int\limits_1^3 {\left| {f'\left( x \right)} \right|dx} \)\( = 3 - \frac{5}{3} = \frac{4}{3}\).
Mà \(\int\limits_{ - 2}^3 {f'\left( x \right)dx} = \left. {f\left( x \right)} \right|_{ - 2}^3 = f\left( 3 \right) - f\left( { - 2} \right)\).
Do đó \(f\left( 3 \right) - f\left( { - 2} \right) \approx 1,3\).
Lời giải
Trả lời: 15
Ta có: \(T\left( x \right) = \int {T'\left( x \right){\rm{d}}x} = \int {\left( { - 20x + 300} \right){\rm{d}}x} = - 10{x^2} + 300x + C,\,C \in \mathbb{R}\).
Khi người đó tăng giá cho thuê mỗi gian hàng thêm 10 triệu đồng thì doanh thu là 12 000 triệu đồng. Nên ứng với \(x = 10\) ta có \(T\left( {10} \right) = 12\,000\) suy ra
\(12000 = - {10.10^2} + 300.10 + C \Rightarrow C = 10000\).
Vậy \(T\left( x \right) = - 10{x^2} + 300x + 10000\).
Ta có \(T\left( x \right)\) là một hàm bậc hai với hệ số \(a < 0\) và đồ thị hàm số có đỉnh là \(I\left( {15;12250} \right)\).
Vậy doanh thu cao nhất mà người đó có thể thu về là 12 250 triệu đồng và khi đó mỗi gian hàng đã tăng giá cho thuê thêm 15 triệu đồng.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
