Câu hỏi:

19/12/2025 2 Lưu

Khảo sát dân cư của thành phố X cho thấy có 1% dân số mắc căn bệnh Y. Các nhà khoa học đã tìm ra một phương pháp xét nghiệm để chẩn đoán căn bệnh này. Tuy nhiên, xét nghiệm có sai số nên khi xét nghiệm 96% người bị bệnh có kết quả dương tính và 92% người không bị bệnh có kết quả âm tính. Một người đi xét nghiệm. Gọi A là biến cố người được xét nghiệm bị bệnh, B là biến cố người được xét nghiệm có kết quả xét nghiệm dương tính.

a) \(P\left( {A|B} \right) = \frac{{P\left( B \right).P\left( {B|A} \right)}}{{P\left( A \right)}}\).
Đúng
Sai
b) Xác suất để người đi xét nghiệm bị bệnh là 1%.
Đúng
Sai
c) Xác suất để người đó có kết quả dương tính khi người đó không bị bệnh là 8%.
Đúng
Sai
d) Một người đi xét nghiệm và có kết quả xét nghiệm dương tính. Xác suất để người đó bị bệnh lớn hơn xác suất để người đó không bị bệnh.
Đúng
Sai

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

a) S, b) Đ, c) Đ, d) S

A là biến cố “Người được xét nghiệm bị bệnh”,

B là biến cố “Người được xét nghiệm có kết quả xét nghiệm dương tính”.

a) \(P\left( {A|B} \right) = \frac{{P\left( A \right).P\left( {B|A} \right)}}{{P\left( B \right)}}\).

b) Theo đề bài ta có \(P\left( A \right) = 1\% = 0,01\).

c) \(P\left( {B|A} \right) = 0,96;P\left( {\overline B |\overline A } \right) = 0,92 \Rightarrow P\left( {B|\overline A } \right) = 1 - 0,92 = 0,08\).

d) Cần tính \(P\left( {A|B} \right)\)\(P\left( {\overline A |B} \right)\).

Ta có \(P\left( B \right) = P\left( A \right).P\left( {B|A} \right) + P\left( {\overline A } \right).P\left( {B|\overline A } \right)\)\( = 0,01.0,96 + 0,99.0,08 = 0,0888\).

Theo công thức Bayes, \(P\left( {A|B} \right) = \frac{{P\left( A \right).P\left( {B|A} \right)}}{{P\left( B \right)}} = \frac{{0,01.0,96}}{{0,0888}} = \frac{4}{{37}}\).

\(P\left( {\overline A |B} \right) = \frac{{P\left( {\overline A } \right).P\left( {B|\overline A } \right)}}{{P\left( B \right)}} = \frac{{0,99.0,08}}{{0,0888}} = \frac{{33}}{{37}}\).

\(\frac{4}{{37}} < \frac{{33}}{{37}}\) nên xác suất để người đó bị bệnh nhỏ hơn xác suất để người đó không bị bệnh.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

A. \(\frac{{{\pi ^2}}}{4}\).                      
B. \(\frac{{{\pi ^2}}}{2}\).                  
C. \(\frac{\pi }{2}\).                          
D. \(\frac{\pi }{4}\).

Lời giải

Đáp án đúng là: B

Ta có \(V = \pi \int\limits_0^\pi {{{\sin }^2}xdx} = \left. {\pi \left( {\frac{x}{2} - \frac{{\sin 2x}}{4}} \right)} \right|_0^\pi = \pi .\frac{\pi }{2} = \frac{{{\pi ^2}}}{2}\).

Câu 4

a) Một vectơ chỉ phương của \(\Delta \)\(\overrightarrow u = \left( {2;0; - 3} \right)\).
Đúng
Sai
b) Góc giữa \(\Delta \)\(\left( P \right)\)\(150^\circ \).
Đúng
Sai
c) Không có điểm chung nào giữa \(\Delta \)\(\left( P \right)\).
Đúng
Sai
d) Hình chiếu của \(M\left( {1;2; - 1} \right)\) lên \(\left( P \right)\)\(N\left( {1;2;1} \right)\).
Đúng
Sai

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP