a) Rút gọn biểu thức: \(P = \left( {\frac{{x - 3\sqrt x }}{{x - 2\sqrt x - 3}} - \frac{{2x}}{{x - 1}}} \right):\frac{{1 - \sqrt x }}{{x - 2\sqrt x + 1}}\) , với \(x \ge 0;x \ne 1;x \ne 9.{\rm{ }}\)
b) Giải phương trình: \({x^2} - x + 6 = 2\sqrt {{x^3} + 8} \)
c) Giải hệ phương trình: \(\left\{ {\begin{array}{*{20}{l}}{{y^2} - 2{x^2} - xy - y + 2x = 0}\\{\sqrt {{x^2} - y - 1} + x + y = 1}\end{array}} \right.\)
a) Rút gọn biểu thức: \(P = \left( {\frac{{x - 3\sqrt x }}{{x - 2\sqrt x - 3}} - \frac{{2x}}{{x - 1}}} \right):\frac{{1 - \sqrt x }}{{x - 2\sqrt x + 1}}\) , với \(x \ge 0;x \ne 1;x \ne 9.{\rm{ }}\)
b) Giải phương trình: \({x^2} - x + 6 = 2\sqrt {{x^3} + 8} \)
c) Giải hệ phương trình: \(\left\{ {\begin{array}{*{20}{l}}{{y^2} - 2{x^2} - xy - y + 2x = 0}\\{\sqrt {{x^2} - y - 1} + x + y = 1}\end{array}} \right.\)
Quảng cáo
Trả lời:
a) \(P = \left( {\frac{{\sqrt x (\sqrt x - 3)}}{{(\sqrt x + 1)(\sqrt x - 3)}} - \frac{{2x}}{{x - 1}}} \right):\frac{{1 - \sqrt x }}{{{{(\sqrt x - 1)}^2}}} = \frac{{\sqrt x (\sqrt x - 1) - 2x}}{{(\sqrt x - 1)(\sqrt x + 1)}}:\frac{{ - 1}}{{\sqrt x - 1}}\)
\( \Rightarrow P = \frac{{ - \sqrt x (\sqrt x + 1)}}{{(\sqrt x - 1)(\sqrt x + 1)}} \cdot ( - (\sqrt x - 1)) = \sqrt x \)
b) Điều kiện: \(x \ge - 2\). Phương trình \( \Leftrightarrow \left( {{x^2} - 2x + 4} \right) + (x + 2) - 2\sqrt {(x + 2)\left( {{x^2} - 2x + 4} \right)} = 0\)
\( \Leftrightarrow {\left( {\sqrt {{x^2} - 2x + 4} - \sqrt {x + 2} } \right)^2} = 0 \Leftrightarrow \sqrt {{x^2} - 2x + 4} = \sqrt {x + 2} \)
\( \Leftrightarrow {x^2} - 3x + 2 - 0 \Leftrightarrow \left[ {\begin{array}{*{20}{l}}{x = 1}\\{x = 2}\end{array}} \right.\) (thỏa mãn ĐK)
Vậy tập nghiệm của phương trình đã cho là: \[{\rm{S = \{ 1 ; 2\} }}\]
c) Điều kiện: \({x^2} - y - 1 \ge 0\). Xét hệ pt: \(\left\{ {\begin{array}{*{20}{l}}{{y^2} - 2{x^2} - xy - y + 2x = 0\,\,\,(1)}\\{\sqrt {{x^2} - y - 1} + x + y = 1\,\,\,\,\,\,\,\,\,\,\,\,(2)}\end{array}} \right.\)
ta có: \((1) \Leftrightarrow (y - 2x)(y + x - 1) = 0 \Leftrightarrow \left[ {\begin{array}{*{20}{l}}{y = 2x}\\{y = 1 - x}\end{array}} \right.\)
* Trường hợp 1: với \(y = 2x\) thay vào (2), thu được:
\(\sqrt {{x^2} - 2x - 1} = 1 - 3x \Leftrightarrow \left\{ {\begin{array}{*{20}{l}}{x \le \frac{1}{3}}\\{{x^2} - 2x - 1 = 1 - 6x + 9{x^2}}\end{array} \Leftrightarrow \left\{ {\begin{array}{*{20}{l}}{x \le \frac{1}{3}}\\{8{x^2} - 4x + 2 = 0}\end{array}} \right.} \right.\) (vô nghiệm)
* Trường hợp 2: với \(y = 1 - x\) thay vào (2), thu được: \(\sqrt {{x^2} + x - 2} = 0 \Leftrightarrow \left[ {\begin{array}{*{20}{l}}{x = 1}\\{x = - 2}\end{array}} \right.\)
Vậy tập nghiệm của hệ pt đã cho là: \[{\rm{S}}\,{\rm{ = }}\left\{ {{\rm{(1 ; 0) ;( - 2 ; 3)}}} \right\}\]
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải

a) Tứ giác OGMB nội tiếp đường tròn đường kính MO \( \Rightarrow \widehat {OMG} = \widehat {OBG}.\)
Tứ giác OGCN nội tiếp đường tròn đường kính NO \( \Rightarrow \widehat {ONG} = \widehat {OCG}\)
Tuy nhiên tam giác OBC cân tại O \( \Rightarrow \widehat {OBC} = \widehat {OCB} \Rightarrow \widehat {OMG} = \widehat {ONG} \Rightarrow \Delta OMN\)cân tại O.
b) ta có: đồng dạng \( \Rightarrow AG.AI = AK.AO.\)
Mặt khác, dễ thấy: \(AK\,.\,AO = A{B^2}\) và \(A{B^2} = AE \cdot AD \Rightarrow AG \cdot AI = AE \cdot AD\)
Khi đó: \(AG \cdot AI = (AI - IE)(AI + IE) = A{I^2} - I{E^2} \Rightarrow I{E^2} = A{I^2} - AG \cdot AI = IG \cdot IA\)
c) Gọi T là giao điểm của HG và CE . Ta có: \(\widehat {BED} = \widehat {BCD} = \widehat {CBA} = \widehat {ACB} \Rightarrow HEGC\) là tứ giác nội tiếp.
\( \Rightarrow \widehat {HGC} = \widehat {HEC} = \widehat {CDB} = \widehat {CBA}.\)Đến đây ta chứng minh hai đường thẳng HG, AB song song với nhau .
Kéo dài CE cắt AB tại F.
Dễ thấy: \(\angle FAE = \angle EDC = \angle ECA \Rightarrow \Delta FAE,\Delta FCA\) đồng dạng \( \Rightarrow F{A^2} = FE\,.\,FC\), mà \(F{B^2} = FE\,.\,FC \Rightarrow F\)là trung điểm của AB. Đến đây sử dụng định lý Ta-lét , thì : \(\frac{{TG}}{{FB}} = \frac{{CT}}{{CF}} = \frac{{TH}}{{FA}} \Rightarrow TG = TH\) hay T là trung điểm của GH.
Lời giải
a) Từ giả thiết ta có: \(a \ne 0\) và \(\frac{{a - 4b + 16c}}{a} \le 0 \Rightarrow a(a - 4b + 16c) \le 0 \Rightarrow {(a - 2b)^2} \le 4\left( {{b^2} - 4ac} \right) \Rightarrow \Delta \ge 0\)
do đó phương trình đã cho có 2 nghiệm \({x_1}\,,\,{x_2}\) mà \({x_1}\, + {x_2} = - \frac{b}{a}\) và \({x_1}\,.{x_2} = \frac{c}{a}\). Đến đây thay vào giả thiết ta thu được: \( - \left( {{x_1} + {x_2}} \right) - 4{x_1}{x_2} \ge \frac{1}{4} \Rightarrow \left( {4{x_1} + 1} \right)\left( {4{x_2} + 1} \right) \le 0\). Nếu \({x_1}\,,\,{x_2}\) đều không âm thì dẫn đến điều vô lý. Do vậy phương trình phải có ít nhất một nghiệm âm.
b) Áp dụng bất đẳng thức Cô – si ta được:
\(\sqrt {1 + 8{a^3}} = \sqrt {(1 + 2a)\left( {1 - 2a + 4{a^2}} \right)} \le \frac{{1 + 2a + 1 - 2a + 4{a^2}}}{2} = 2{a^2} + 1.\)
Tương tự, ta có: \(\sqrt {1 + 8{b^3}} \le 2{b^2} + 1;\sqrt {1 + 8{c^3}} \le 2{c^2} + 1.\)
Do đó: \(P \ge \frac{{{a^2}}}{{\left( {2{a^2} + 1} \right)\left( {2{b^2} + 1} \right)}} + \frac{{{b^2}}}{{\left( {2{b^2} + 1} \right)\left( {2{c^2} + 1} \right)}} + \frac{{{c^2}}}{{\left( {2{c^2} + 1} \right)\left( {2{a^2} + 1} \right)}}\)
Tiếp theo ta chứng minh: \(\frac{{{a^2}}}{{\left( {2{a^2} + 1} \right)\left( {2{b^2} + 1} \right)}} + \frac{{{b^2}}}{{\left( {2{b^2} + 1} \right)\left( {2{c^2} + 1} \right)}} + \frac{{{c^2}}}{{\left( {2{c^2} + 1} \right)\left( {2{a^2} + 1} \right)}} \ge \frac{1}{3}(*)\)
Thật vậy: \((*) \Leftrightarrow 3\left( {2\left( {{a^2}{b^2} + {b^2}{c^2} + {c^2}{a^2}} \right) + {a^2} + {b^2} + {c^2}} \right) \ge \left( {2{a^2} + 1} \right)\left( {2{b^2} + 1} \right)\left( {2{c^2} + 1} \right)\)
\( \Leftrightarrow 2\left( {{a^2}{b^2} + {b^2}{c^2} + {c^2}{a^2}} \right) + \left( {{a^2} + {b^2} + {c^2}} \right) \ge 9.\)
Điều này hiển nhiên đúng do \({a^2}{b^2} + {b^2}{c^2} + {c^2}{a^2} \ge 3\sqrt[4]{{{a^4}{b^4}{c^4}}} = 3\) và \({a^2} + {b^2} + {c^2} \ge 3\sqrt[3]{{{a^2}{b^2}{c^2}}} = 3.\)
Vậy GTNN của \(P = \frac{1}{3}\) đạt tại \(a = b = c = 1\)
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.