Đồ thị như hình bên dưới là của hàm số nào trong các hàm số sau?

Đồ thị như hình bên dưới là của hàm số nào trong các hàm số sau?

Quảng cáo
Trả lời:
Lời giải
Gọi \(\left( P \right):y = a{x^2} + bx + c\left( {a > 0} \right)\).
Dựa vào đồ thị hàm số ta có \(\left\{ \begin{array}{l} - \frac{b}{{2a}} = - 1\\a \cdot {\left( { - 1} \right)^2} + b \cdot \left( { - 1} \right) + c = 0\\c = 1\end{array} \right.\)\( \Leftrightarrow \left\{ \begin{array}{l}2a - b = 0\\a - b + c = 0\\c = 1\end{array} \right.\)\( \Leftrightarrow \left\{ \begin{array}{l}a = 1\\b = 2\\c = 1\end{array} \right.\).
Vậy \(\left( P \right):y = {x^2} + 2x + 1\). Chọn B.
Hot: 1000+ Đề thi giữa kì 2 file word cấu trúc mới 2026 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- Trọng tâm Toán, Văn, Anh 10 cho cả 3 bộ KNTT, CTST, CD VietJack - Sách 2025 ( 13.600₫ )
- Trọng tâm Lí, Hóa, Sinh 10 cho cả 3 bộ KNTT, CTST và CD VietJack - Sách 2025 ( 40.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1
Lời giải
Lời giải
Tọa độ đỉnh của parabol là \(I\left( {2; - 1} \right)\).
Vì \(a = 1 > 0\) nên ta có bảng biến thiên như sau:
Dựa vào bảng biến thiên, ta có giá trị lớn nhất của hàm số \(y = {x^2} - 4x + 3\) trên đoạn \(\left[ { - 1;4} \right]\) là 8, giá trị nhỏ nhất của hàm số \(y = {x^2} - 4x + 3\) trên đoạn \(\left[ { - 1;4} \right]\) là −1.
Vậy tổng giá trị lớn nhất và giá trị lớn nhất của hàm số \(y = {x^2} - 4x + 3\) trên đoạn \(\left[ { - 1;4} \right]\) là 7. Chọn C.
Câu 2
a) Tọa độ đỉnh của \(\left( P \right)\) là \(\left( { - 1;0} \right)\).
b) Hàm số đã cho đồng biến trên khoảng \(\left( {0; + \infty } \right)\).
c) Trong ba số \(a,b,c\) có đúng hai số dương.
Lời giải
Lời giải
a) Dựa vào đồ thị hàm số, ta có tọa độ đỉnh của \(\left( P \right)\) là \(\left( { - 1;0} \right)\).
b) Hàm số đã cho đồng biến trên khoảng \(\left( { - 1; + \infty } \right)\).
c) Bề lõm của đồ thị quay lên trên nên \(a > 0\).
Đồ thị hàm số cắt trục tung tại điểm có tung độ dương nên \(c > 0\).
Hoành độ của đỉnh \(I\) là \(x = - \frac{b}{{2a}} < 0\) mà \(a > 0\) nên \(b > 0\).
Vậy \(a > 0,b > 0,c > 0\).
d) Theo đề ta có hệ phương trình \(\left\{ \begin{array}{l} - \frac{b}{{2a}} = - 1\\a - b + c = 0\\c = 1\end{array} \right.\)\(\left\{ \begin{array}{l}a = 1\\b = 2\\c = 1\end{array} \right.\). Vậy \(\left( P \right):y = {x^2} + 2x + 1\).
Dựa vào đồ thị hàm số, ta có giá trị lớn nhất của hàm số trên đoạn \(\left[ { - 2;1} \right]\) bằng 4.
Đáp án: a) Đúng; b) Sai; c) Sai; d) Sai.
Câu 3
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 4
A. \(\left( { - 2; + \infty } \right)\).
B. \(\left( { - \infty ; + \infty } \right)\).
C. \(\left( {2; + \infty } \right)\).
D. \(\left( { - \infty ;2} \right)\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
a) Trục đối xứng của đồ thị là đường thẳng \(x = - 2\).
b) Đỉnh \(I\) của đồ thị hàm số có tọa độ là \(\left( {2; - 2} \right)\).
c) Đồ thị hàm số đi qua điểm \(A\left( {0;6} \right)\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 7
b) Điểm \(A\left( {0; - 3} \right)\) thuộc parabol \(\left( P \right)\).
c) Parabol \(\left( P \right)\) và đường thẳng \(\Delta \) cắt nhau tại hai điểm \(M\left( {0;1} \right)\) và \(N\left( { - 2; - 3} \right)\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.


