Câu hỏi:

22/12/2025 6 Lưu

Đồ thị như hình bên dưới là của hàm số nào trong các hàm số sau?

Đồ thị như hình bên dưới là của hàm số nào trong các hàm số sau? (ảnh 1)

A. \(y =  - {x^2} + 2x + 1\).   
B. \(y = {x^2} + 2x + 1\).  
C. \(y = {x^2} + 2x - 1\).  
D. \(y = {x^2} - 2x + 1\).

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Lời giải

Gọi \(\left( P \right):y = a{x^2} + bx + c\left( {a > 0} \right)\).

Dựa vào đồ thị hàm số ta có \(\left\{ \begin{array}{l} - \frac{b}{{2a}} =  - 1\\a \cdot {\left( { - 1} \right)^2} + b \cdot \left( { - 1} \right) + c = 0\\c = 1\end{array} \right.\)\( \Leftrightarrow \left\{ \begin{array}{l}2a - b = 0\\a - b + c = 0\\c = 1\end{array} \right.\)\( \Leftrightarrow \left\{ \begin{array}{l}a = 1\\b = 2\\c = 1\end{array} \right.\).

Vậy \(\left( P \right):y = {x^2} + 2x + 1\). Chọn B.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Lời giải

Tọa độ đỉnh của parabol là \(I\left( {2; - 1} \right)\).

Vì \(a = 1 > 0\) nên ta có bảng biến thiên như sau:

Tổng giá trị nhỏ nhất và giá trị lớn nhất của hàm số y = x^2 - 4x + 3 trên đoạn [- 1;4] là (ảnh 1)

Dựa vào bảng biến thiên, ta có giá trị lớn nhất của hàm số \(y = {x^2} - 4x + 3\) trên đoạn \(\left[ { - 1;4} \right]\) là 8, giá trị nhỏ nhất của hàm số \(y = {x^2} - 4x + 3\) trên đoạn \(\left[ { - 1;4} \right]\) là −1.

Vậy tổng giá trị lớn nhất và giá trị lớn nhất của hàm số \(y = {x^2} - 4x + 3\) trên đoạn \(\left[ { - 1;4} \right]\) là 7. Chọn C.

Câu 2

a) Parabol \(\left( P \right)\) có bề lõm quay lên.
Đúng
Sai

b) Điểm \(A\left( {0; - 3} \right)\) thuộc parabol \(\left( P \right)\).

Đúng
Sai

c) Parabol \(\left( P \right)\) và đường thẳng \(\Delta \) cắt nhau tại hai điểm \(M\left( {0;1} \right)\) và \(N\left( { - 2; - 3} \right)\).

Đúng
Sai
d) Diện tích tam giác \(AMN\) bằng 4.
Đúng
Sai

Lời giải

Lời giải

a) Vì \(a = 1 > 0\) nên \(\left( P \right)\) có bề lõm quay lên.

b) Thay tọa độ điểm \(A\left( {0; - 3} \right)\) vào \(\left( P \right)\) ta được \( - 3 = {0^2} + 4 \cdot 0 + 1\) (vô lí).

Vậy điểm \(A\left( {0; - 3} \right)\) không thuộc parabol \(\left( P \right)\).

c) Hoành độ giao điểm của \(\left( P \right)\) và đường thẳng \(\Delta \) là nghiệm phương trình

\({x^2} + 4x + 1 = 2x + 1\)\( \Leftrightarrow {x^2} + 2x = 0\)\( \Leftrightarrow \left[ \begin{array}{l}x = 0 \Rightarrow y = 1\\x =  - 2 \Rightarrow y =  - 3\end{array} \right.\)\(\).

Vậy \(M\left( {0;1} \right),N\left( { - 2; - 3} \right)\).

d)

Cho parabol (P):y = x^2 + 4x + 1 và đường thẳng tam giác :y = 2x + 1. a) Parabol (P) có bề lõm quay lên. (ảnh 1)

\({S_{AMN}} = \frac{1}{2}NA \cdot MA = \frac{1}{2} \cdot 2 \cdot 4 = 4\).

Đáp án: a) Đúng;     b) Sai;    c) Đúng;     d) Đúng.

Câu 3

A. Trên khoảng \(\left( { - \infty ;1} \right)\) hàm số đồng biến.

B. Hàm số nghịch biến trên khoảng \(\left( {2; + \infty } \right)\) và đồng biến trên khoảng \(\left( { - \infty ;2} \right)\).

C. Trên khoảng \(\left( {3; + \infty } \right)\) hàm số nghịch biến.

D. Hàm số nghịch biến trên khoảng \(\left( {4; + \infty } \right)\) và đồng biến trên khoảng \(\left( { - \infty ;4} \right)\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

a) Tọa độ đỉnh của \(\left( P \right)\) là \(\left( { - 1;0} \right)\).

Đúng
Sai

b) Hàm số đã cho đồng biến trên khoảng \(\left( {0; + \infty } \right)\).

Đúng
Sai

c) Trong ba số \(a,b,c\) có đúng hai số dương.

Đúng
Sai
d) Giá trị lớn nhất của hàm số trên đoạn \(\left[ { - 2;1} \right]\) bằng 1.
Đúng
Sai

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP