Khẳng định nào dưới đây đúng?
A. Hàm số \(y = - 3{x^2} + x + 2\) có giá trị lớn nhất bằng \(\frac{{25}}{{12}}\).
B. Hàm số \(y = - 3{x^2} + x + 2\) có giá trị nhỏ nhất bằng \(\frac{{25}}{{12}}\).
C. Hàm số \(y = - 3{x^2} + x + 2\) có giá trị lớn nhất bằng \(\frac{{25}}{3}\).
Quảng cáo
Trả lời:
Lời giải
Tọa độ đỉnh của parabol là \(I\left( {\frac{1}{6};\frac{{25}}{{12}}} \right)\).
Vì \(a = - 3 < 0\) nên giá trị lớn nhất của hàm số là \(\frac{{25}}{{12}}\) khi \(x = \frac{1}{6}\). Chọn A.
Hot: 1000+ Đề thi giữa kì 2 file word cấu trúc mới 2026 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- Trọng tâm Lí, Hóa, Sinh 10 cho cả 3 bộ KNTT, CTST và CD VietJack - Sách 2025 ( 40.000₫ )
- Trọng tâm Toán, Văn, Anh 10 cho cả 3 bộ KNTT, CTST, CD VietJack - Sách 2025 ( 13.600₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1
Lời giải
Lời giải
Tọa độ đỉnh của parabol là \(I\left( {2; - 1} \right)\).
Vì \(a = 1 > 0\) nên ta có bảng biến thiên như sau:
Dựa vào bảng biến thiên, ta có giá trị lớn nhất của hàm số \(y = {x^2} - 4x + 3\) trên đoạn \(\left[ { - 1;4} \right]\) là 8, giá trị nhỏ nhất của hàm số \(y = {x^2} - 4x + 3\) trên đoạn \(\left[ { - 1;4} \right]\) là −1.
Vậy tổng giá trị lớn nhất và giá trị lớn nhất của hàm số \(y = {x^2} - 4x + 3\) trên đoạn \(\left[ { - 1;4} \right]\) là 7. Chọn C.
Câu 2
a) Tọa độ đỉnh của \(\left( P \right)\) là \(\left( { - 1;0} \right)\).
b) Hàm số đã cho đồng biến trên khoảng \(\left( {0; + \infty } \right)\).
c) Trong ba số \(a,b,c\) có đúng hai số dương.
Lời giải
Lời giải
a) Dựa vào đồ thị hàm số, ta có tọa độ đỉnh của \(\left( P \right)\) là \(\left( { - 1;0} \right)\).
b) Hàm số đã cho đồng biến trên khoảng \(\left( { - 1; + \infty } \right)\).
c) Bề lõm của đồ thị quay lên trên nên \(a > 0\).
Đồ thị hàm số cắt trục tung tại điểm có tung độ dương nên \(c > 0\).
Hoành độ của đỉnh \(I\) là \(x = - \frac{b}{{2a}} < 0\) mà \(a > 0\) nên \(b > 0\).
Vậy \(a > 0,b > 0,c > 0\).
d) Theo đề ta có hệ phương trình \(\left\{ \begin{array}{l} - \frac{b}{{2a}} = - 1\\a - b + c = 0\\c = 1\end{array} \right.\)\(\left\{ \begin{array}{l}a = 1\\b = 2\\c = 1\end{array} \right.\). Vậy \(\left( P \right):y = {x^2} + 2x + 1\).
Dựa vào đồ thị hàm số, ta có giá trị lớn nhất của hàm số trên đoạn \(\left[ { - 2;1} \right]\) bằng 4.
Đáp án: a) Đúng; b) Sai; c) Sai; d) Sai.
Câu 3
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 4
A. \(\left( { - 2; + \infty } \right)\).
B. \(\left( { - \infty ; + \infty } \right)\).
C. \(\left( {2; + \infty } \right)\).
D. \(\left( { - \infty ;2} \right)\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
a) Trục đối xứng của đồ thị là đường thẳng \(x = - 2\).
b) Đỉnh \(I\) của đồ thị hàm số có tọa độ là \(\left( {2; - 2} \right)\).
c) Đồ thị hàm số đi qua điểm \(A\left( {0;6} \right)\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 7
b) Điểm \(A\left( {0; - 3} \right)\) thuộc parabol \(\left( P \right)\).
c) Parabol \(\left( P \right)\) và đường thẳng \(\Delta \) cắt nhau tại hai điểm \(M\left( {0;1} \right)\) và \(N\left( { - 2; - 3} \right)\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.


