Câu hỏi:

22/12/2025 9 Lưu

Cho parabol \(\left( P \right):y =  - 3{x^2} + 4x + 6\). Khi đó:

a) Trục đối xứng của \(\left( P \right)\) có phương trình là \(x = \frac{4}{3}\).

Đúng
Sai

b) \(\left( P \right)\) đi qua điểm \(A\left( {5; - 49} \right)\).

Đúng
Sai

c) \(\left( P \right)\) cắt trục tung tại điểm có tung độ bằng \( - 6\).

Đúng
Sai
d) \(\left( P \right)\) có đỉnh là \(I\left( {\frac{2}{3};\frac{{22}}{3}} \right)\).
Đúng
Sai

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Lời giải

a) Trục đối xứng của \(\left( P \right)\) có phương trình là \(x =  - \frac{4}{{2 \cdot \left( { - 3} \right)}} = \frac{2}{3}\).

b) Thay tọa độ điểm \(A\left( {5; - 49} \right)\) vào hàm số, ta được \( - 49 =  - 3 \cdot {5^2} + 4 \cdot 5 + 6\) (đúng).

Vậy \(\left( P \right)\) đi qua điểm \(A\left( {5; - 49} \right)\).

c) Thay \(x = 0\), vào hàm số ta được \(y =  - 3 \cdot {0^2} + 4 \cdot 0 + 6 = 6\).

Vậy \(\left( P \right)\) cắt trục tung tại điểm có tung độ bằng \(6\).

d) \(\left( P \right)\) có tọa độ đỉnh \(\left\{ \begin{array}{l}x =  - \frac{4}{{2\left( { - 3} \right)}} = \frac{2}{3}\\y =  - 3 \cdot {\left( {\frac{2}{3}} \right)^2} + 4 \cdot \frac{2}{3} + 6 = \frac{{22}}{3}\end{array} \right. \Rightarrow I\left( {\frac{2}{3};\frac{{22}}{3}} \right)\).

Đáp án: a) Sai;     b) Đúng;    c) Sai;     d) Đúng.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Lời giải

Tọa độ đỉnh của parabol là \(I\left( {2; - 1} \right)\).

Vì \(a = 1 > 0\) nên ta có bảng biến thiên như sau:

Tổng giá trị nhỏ nhất và giá trị lớn nhất của hàm số y = x^2 - 4x + 3 trên đoạn [- 1;4] là (ảnh 1)

Dựa vào bảng biến thiên, ta có giá trị lớn nhất của hàm số \(y = {x^2} - 4x + 3\) trên đoạn \(\left[ { - 1;4} \right]\) là 8, giá trị nhỏ nhất của hàm số \(y = {x^2} - 4x + 3\) trên đoạn \(\left[ { - 1;4} \right]\) là −1.

Vậy tổng giá trị lớn nhất và giá trị lớn nhất của hàm số \(y = {x^2} - 4x + 3\) trên đoạn \(\left[ { - 1;4} \right]\) là 7. Chọn C.

Câu 2

a) Parabol \(\left( P \right)\) có bề lõm quay lên.
Đúng
Sai

b) Điểm \(A\left( {0; - 3} \right)\) thuộc parabol \(\left( P \right)\).

Đúng
Sai

c) Parabol \(\left( P \right)\) và đường thẳng \(\Delta \) cắt nhau tại hai điểm \(M\left( {0;1} \right)\) và \(N\left( { - 2; - 3} \right)\).

Đúng
Sai
d) Diện tích tam giác \(AMN\) bằng 4.
Đúng
Sai

Lời giải

Lời giải

a) Vì \(a = 1 > 0\) nên \(\left( P \right)\) có bề lõm quay lên.

b) Thay tọa độ điểm \(A\left( {0; - 3} \right)\) vào \(\left( P \right)\) ta được \( - 3 = {0^2} + 4 \cdot 0 + 1\) (vô lí).

Vậy điểm \(A\left( {0; - 3} \right)\) không thuộc parabol \(\left( P \right)\).

c) Hoành độ giao điểm của \(\left( P \right)\) và đường thẳng \(\Delta \) là nghiệm phương trình

\({x^2} + 4x + 1 = 2x + 1\)\( \Leftrightarrow {x^2} + 2x = 0\)\( \Leftrightarrow \left[ \begin{array}{l}x = 0 \Rightarrow y = 1\\x =  - 2 \Rightarrow y =  - 3\end{array} \right.\)\(\).

Vậy \(M\left( {0;1} \right),N\left( { - 2; - 3} \right)\).

d)

Cho parabol (P):y = x^2 + 4x + 1 và đường thẳng tam giác :y = 2x + 1. a) Parabol (P) có bề lõm quay lên. (ảnh 1)

\({S_{AMN}} = \frac{1}{2}NA \cdot MA = \frac{1}{2} \cdot 2 \cdot 4 = 4\).

Đáp án: a) Đúng;     b) Sai;    c) Đúng;     d) Đúng.

Câu 3

A. Trên khoảng \(\left( { - \infty ;1} \right)\) hàm số đồng biến.

B. Hàm số nghịch biến trên khoảng \(\left( {2; + \infty } \right)\) và đồng biến trên khoảng \(\left( { - \infty ;2} \right)\).

C. Trên khoảng \(\left( {3; + \infty } \right)\) hàm số nghịch biến.

D. Hàm số nghịch biến trên khoảng \(\left( {4; + \infty } \right)\) và đồng biến trên khoảng \(\left( { - \infty ;4} \right)\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

a) Tọa độ đỉnh của \(\left( P \right)\) là \(\left( { - 1;0} \right)\).

Đúng
Sai

b) Hàm số đã cho đồng biến trên khoảng \(\left( {0; + \infty } \right)\).

Đúng
Sai

c) Trong ba số \(a,b,c\) có đúng hai số dương.

Đúng
Sai
d) Giá trị lớn nhất của hàm số trên đoạn \(\left[ { - 2;1} \right]\) bằng 1.
Đúng
Sai

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

a) Tọa độ đỉnh \(I\left( {1;3} \right)\).
Đúng
Sai

b) Phương trình trục đối xứng parabol \(x = 2\).

Đúng
Sai

c) Bề lõm parabol hướng xuống và parabol (P) cắt trục Oy tại điểm \(A\left( {0;3} \right)\).

Đúng
Sai
d) Hàm số đồng biến trên khoảng \(\left( { - \infty ;1} \right)\) và nghịch biến trên khoảng \(\left( {1; + \infty } \right)\).
Đúng
Sai

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP