Một chiếc cổng có hình dạng là một parabol. Biết khoảng cách giữa hai chân cổng bằng 162 m. Trên thành cổng, tại vị trí có độ cao 72 m so với mặt đất (điểm M), người ta thả một quả cầu sắt. Vị trí chạm đất của quả cầu cách chân chổng A một đoạn khoảng 17 m. Hãy tính độ cao của cổng theo đơn vị mét (tính từ mặt đất đến điểm cao nhất của cổng) (làm tròn đến hàng đơn vị).

Quảng cáo
Trả lời:
Đáp án:
Lời giải
Chọn hệ trục tọa độ như hình vẽ
Phương trình \(\left( P \right):y = - a{x^2} + h\left( {a > 0} \right)\).
Vì \(\left( P \right)\) đi qua hai điểm \(M\left( { - 64;72} \right),A\left( { - 81;0} \right)\) nên ta có hệ phương trình
\(\left\{ \begin{array}{l} - 4096a + h = 72\\ - 6561a + h = 0\end{array} \right.\)\( \Leftrightarrow \left\{ \begin{array}{l}a = \frac{{72}}{{2465}}\\h \approx 192\end{array} \right.\).
Vậy chiều cao của cổng khoảng 192 m.
Trả lời: 192.
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- Trọng tâm Toán, Văn, Anh 10 cho cả 3 bộ KNTT, CTST, CD VietJack - Sách 2025 ( 13.600₫ )
- Trọng tâm Lí, Hóa, Sinh 10 cho cả 3 bộ KNTT, CTST và CD VietJack - Sách 2025 ( 40.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1
Lời giải
Lời giải
Tọa độ đỉnh của parabol là \(I\left( {2; - 1} \right)\).
Vì \(a = 1 > 0\) nên ta có bảng biến thiên như sau:
Dựa vào bảng biến thiên, ta có giá trị lớn nhất của hàm số \(y = {x^2} - 4x + 3\) trên đoạn \(\left[ { - 1;4} \right]\) là 8, giá trị nhỏ nhất của hàm số \(y = {x^2} - 4x + 3\) trên đoạn \(\left[ { - 1;4} \right]\) là −1.
Vậy tổng giá trị lớn nhất và giá trị lớn nhất của hàm số \(y = {x^2} - 4x + 3\) trên đoạn \(\left[ { - 1;4} \right]\) là 7. Chọn C.
Câu 2
b) Điểm \(A\left( {0; - 3} \right)\) thuộc parabol \(\left( P \right)\).
c) Parabol \(\left( P \right)\) và đường thẳng \(\Delta \) cắt nhau tại hai điểm \(M\left( {0;1} \right)\) và \(N\left( { - 2; - 3} \right)\).
Lời giải
Lời giải
a) Vì \(a = 1 > 0\) nên \(\left( P \right)\) có bề lõm quay lên.
b) Thay tọa độ điểm \(A\left( {0; - 3} \right)\) vào \(\left( P \right)\) ta được \( - 3 = {0^2} + 4 \cdot 0 + 1\) (vô lí).
Vậy điểm \(A\left( {0; - 3} \right)\) không thuộc parabol \(\left( P \right)\).
c) Hoành độ giao điểm của \(\left( P \right)\) và đường thẳng \(\Delta \) là nghiệm phương trình
\({x^2} + 4x + 1 = 2x + 1\)\( \Leftrightarrow {x^2} + 2x = 0\)\( \Leftrightarrow \left[ \begin{array}{l}x = 0 \Rightarrow y = 1\\x = - 2 \Rightarrow y = - 3\end{array} \right.\)\(\).
Vậy \(M\left( {0;1} \right),N\left( { - 2; - 3} \right)\).
d)
\({S_{AMN}} = \frac{1}{2}NA \cdot MA = \frac{1}{2} \cdot 2 \cdot 4 = 4\).
Đáp án: a) Đúng; b) Sai; c) Đúng; d) Đúng.
Câu 3
A. Trên khoảng \(\left( { - \infty ;1} \right)\) hàm số đồng biến.
B. Hàm số nghịch biến trên khoảng \(\left( {2; + \infty } \right)\) và đồng biến trên khoảng \(\left( { - \infty ;2} \right)\).
C. Trên khoảng \(\left( {3; + \infty } \right)\) hàm số nghịch biến.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 4
a) Tọa độ đỉnh của \(\left( P \right)\) là \(\left( { - 1;0} \right)\).
b) Hàm số đã cho đồng biến trên khoảng \(\left( {0; + \infty } \right)\).
c) Trong ba số \(a,b,c\) có đúng hai số dương.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
