Câu hỏi:

22/12/2025 124 Lưu

Bác Mai dùng 32 mét lưới thép gai rào một mảnh vườn hình chữ nhật để trồng rau. Gọi \(x\) là chiều rộng của mảnh vườn hình chữ nhật. Để diện tích mảnh vườn là lớn nhất thì chiều rộng của mảnh vườn là bao nhiêu mét?

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Đáp án:

8

Lời giải

Gọi \(x\) là chiều rộng của mảnh vườn hình chữ nhật (\(0 < x < 16\))

Nửa chu vi của mảnh vườn là \(32:2 = 16\) (m).

Chiều dài của mảnh vườn là \(16 - x\)(m).

Diện tích của mảnh vườn là \(S\left( x \right) = x\left( {16 - x} \right) =  - {x^2} + 16x\).

Bài toán trở thành tìm giá trị lớn nhất của hàm số \(S\left( x \right) =  - {x^2} + 16x\) với \(0 < x < 16\).

Tọa độ đỉnh của đồ thị hàm số là \(I\left( {8;64} \right)\).

Vì \(8 \in \left( {0;16} \right)\) và \(a =  - 1 < 0\) nên giá trị lớn nhất của hàm số là 64 khi \(x = 8\).

Trả lời: 8.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Lời giải

Tọa độ đỉnh của parabol là \(I\left( {2; - 1} \right)\).

Vì \(a = 1 > 0\) nên ta có bảng biến thiên như sau:

Tổng giá trị nhỏ nhất và giá trị lớn nhất của hàm số y = x^2 - 4x + 3 trên đoạn [- 1;4] là (ảnh 1)

Dựa vào bảng biến thiên, ta có giá trị lớn nhất của hàm số \(y = {x^2} - 4x + 3\) trên đoạn \(\left[ { - 1;4} \right]\) là 8, giá trị nhỏ nhất của hàm số \(y = {x^2} - 4x + 3\) trên đoạn \(\left[ { - 1;4} \right]\) là −1.

Vậy tổng giá trị lớn nhất và giá trị lớn nhất của hàm số \(y = {x^2} - 4x + 3\) trên đoạn \(\left[ { - 1;4} \right]\) là 7. Chọn C.

Câu 2

a) Tọa độ đỉnh của \(\left( P \right)\) là \(\left( { - 1;0} \right)\).

Đúng
Sai

b) Hàm số đã cho đồng biến trên khoảng \(\left( {0; + \infty } \right)\).

Đúng
Sai

c) Trong ba số \(a,b,c\) có đúng hai số dương.

Đúng
Sai
d) Giá trị lớn nhất của hàm số trên đoạn \(\left[ { - 2;1} \right]\) bằng 1.
Đúng
Sai

Lời giải

Lời giải

a) Dựa vào đồ thị hàm số, ta có tọa độ đỉnh của \(\left( P \right)\) là \(\left( { - 1;0} \right)\).

b) Hàm số đã cho đồng biến trên khoảng \(\left( { - 1; + \infty } \right)\).

c) Bề lõm của đồ thị quay lên trên nên \(a > 0\).

Đồ thị hàm số cắt trục tung tại điểm có tung độ dương nên \(c > 0\).

Hoành độ của đỉnh \(I\) là \(x =  - \frac{b}{{2a}} < 0\) mà \(a > 0\) nên \(b > 0\).

Vậy \(a > 0,b > 0,c > 0\).

d) Theo đề ta có hệ phương trình \(\left\{ \begin{array}{l} - \frac{b}{{2a}} =  - 1\\a - b + c = 0\\c = 1\end{array} \right.\)\(\left\{ \begin{array}{l}a = 1\\b = 2\\c = 1\end{array} \right.\). Vậy \(\left( P \right):y = {x^2} + 2x + 1\).

Cho hàm số bậc hai y = ax^2 + bx + c có đồ thị là parabol (P) như hình a) Tọa độ đỉnh của (P) là (- 1;0). (ảnh 2)

Dựa vào đồ thị hàm số, ta có giá trị lớn nhất của hàm số trên đoạn \(\left[ { - 2;1} \right]\) bằng 4.

Đáp án: a) Đúng;     b) Sai;    c) Sai;     d) Sai.

Câu 3

A. \(a < 0,b > 0,c < 0\).          
B. \(a < 0,b < 0,c < 0\).     
C. \(a < 0,b > 0,c > 0\).     
D. \(a < 0,b < 0,c > 0\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

A. \(\left( { - 2; + \infty } \right)\). 

B. \(\left( { - \infty ; + \infty } \right)\).  

C. \(\left( {2; + \infty } \right)\). 

D. \(\left( { - \infty ;2} \right)\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

A. \( - 3\).
B. \(1\).
C. \(3\).
D. \(13\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

a) Trục đối xứng của đồ thị là đường thẳng \(x =  - 2\).

Đúng
Sai

b) Đỉnh \(I\) của đồ thị hàm số có tọa độ là \(\left( {2; - 2} \right)\).

Đúng
Sai

c) Đồ thị hàm số đi qua điểm \(A\left( {0;6} \right)\).

Đúng
Sai
d) Hàm số đã cho là \(y = 2{x^2} - 2x + 6\).
Đúng
Sai

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

a) Parabol \(\left( P \right)\) có bề lõm quay lên.
Đúng
Sai

b) Điểm \(A\left( {0; - 3} \right)\) thuộc parabol \(\left( P \right)\).

Đúng
Sai

c) Parabol \(\left( P \right)\) và đường thẳng \(\Delta \) cắt nhau tại hai điểm \(M\left( {0;1} \right)\) và \(N\left( { - 2; - 3} \right)\).

Đúng
Sai
d) Diện tích tam giác \(AMN\) bằng 4.
Đúng
Sai

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP