Câu hỏi:

22/12/2025 178 Lưu

Lớp 11A có 40 học sinh, trong đó có 16 học sinh giỏi Toán, 20 học sinh giỏi Văn và 12 học sinh giỏi cả hai môn đó. Chọn ngẫu nhiên một học sinh của lớp. Xác suất để chọn được học sinh giỏi một trong hai môn Toán hoặc Văn là

A. \[0,3.\]  
B. \[0,1\]. 
C. \[0,5\]. 
D. \[0,6\].

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Hướng dẫn giải

Đáp án đúng là: D

Gọi biến cố A: “Học sinh đó giỏi Toán”.

Biến cố B: “Học sinh đó giỏi Văn”.

Biến cố AB: “Học sinh đó giỏi cả Văn và Toán”.

Biến cố \({\rm{A}} \cup {\rm{B}}\): “Học sinh đó giỏi một trong hai môn Toán hoặc Văn”.

Ta có \(P\left( A \right) = \frac{{16}}{{40}} = \frac{2}{5};P\left( B \right) = \frac{{20}}{{40}} = \frac{1}{2};P\left( {AB} \right) = \frac{{12}}{{40}} = \frac{3}{{10}}\).

Khi đó \[P(A \cup B) = P(A) + P(B) - P(AB)\]\( = \frac{2}{5} + \frac{1}{2} - \frac{3}{{10}} = \frac{6}{{10}}\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Hướng dẫn giải

Gọi \(n\), \(\left( {\,n \in {\mathbb{N}^*}} \right)\)là số năm cần tìm.

Số tiền cả gốc lẫn lãi của Nam sau \(n\) năm là \(65.{\left( {1 + 6,5\% } \right)^n}\) triệu đồng.

Ta có: \(65.{\left( {1 + 6,5\% } \right)^n} \approx 83\)\( \Rightarrow \,n = 4\).

Vậy sau 4 năm Nam có thể mua được một chiếc xe máy với giá 83 triệu đồng.

Lời giải

Hướng dẫn giải

Đáp án đúng là: A

Gọi biến cố A: “Xạ thủ thứ nhất bắn trúng mục tiêu”,

Biến cố B: “Xạ thủ thứ hai bắn trúng mục tiêu”.

Biến cố AB: “Cả hai xạ thủ bắn trúng mục tiêu”.

Theo đề, có \(P\left( A \right) = 0,6;P(B) = 0,5\).

Ta có \(P\left( {AB} \right) = P\left( A \right).P\left( B \right) = 0,6.0,5 = 0,3\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

A. \[f'({x_0})\]       
B. \[f({x_0})\].       
C. \[ - f'({x_0})\].  
D. \[ - f({x_0})\].

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP