Trong một cuộc khảo sát về các môn học yêu thích đối với 40 học sinh lớp 11A. Kết quả 25 học sinh thích môn Lý, 20 học sinh thích môn Hóa và 14 học sinh thích cả Lý và Hóa. Chọn ngẫu nhiêu một học sinh. Xác suất để chọn được học sinh không thích cả hai môn Lý và Hóa là
Trong một cuộc khảo sát về các môn học yêu thích đối với 40 học sinh lớp 11A. Kết quả 25 học sinh thích môn Lý, 20 học sinh thích môn Hóa và 14 học sinh thích cả Lý và Hóa. Chọn ngẫu nhiêu một học sinh. Xác suất để chọn được học sinh không thích cả hai môn Lý và Hóa là
Quảng cáo
Trả lời:
Hướng dẫn giải
Đáp án đúng là: A
Gọi biến cố A: “Học sinh đó thích môn Lý”.
Biến cố B: “Học sinh đó thích môn Hóa”.
Biến cố AB: “Học sinh đó thích cả môn Lý và Hóa”.
Biến cố \({\rm{A}} \cup {\rm{B}}\): “Học sinh đó thích môn Lý hoặc môn Hóa”.
Theo đề, \(P\left( A \right) = \frac{{25}}{{40}} = \frac{5}{8};P\left( B \right) = \frac{{20}}{{40}} = \frac{1}{2};P\left( {AB} \right) = \frac{{14}}{{40}} = \frac{7}{{20}}\).
Khi đó \[P(A \cup B) = P(A) + P(B) - P(AB)\]\( = \frac{5}{8} + \frac{1}{2} - \frac{7}{{20}} = \frac{{31}}{{40}}\).
Xác suất để chọn được học sinh không thích cả hai môn Lý và Hóa là:
\(1 - \frac{{31}}{{40}} = \frac{9}{{40}} = 0,225\).
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- Trọng tâm Sử, Địa, GD KTPL 11 cho cả 3 bộ Kết nối, Chân trời, Cánh diều VietJack - Sách 2025 ( 38.000₫ )
- Trọng tâm Hóa học 11 dùng cho cả 3 bộ sách Kết nối, Cánh diều, Chân trời sáng tạo VietJack - Sách 2025 ( 58.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Hướng dẫn giải
Gọi \(H\) là trung điểm \(AD\), ta có \(SH \bot AD\), \(\left( {SAD} \right) \bot \left( {ABCD} \right),\,\left( {SAD} \right) \cap \left( {ABCD} \right) = AD\) nên \(SH \bot \left( {ABCD} \right)\) và \(SH = a\sqrt 3 \).
Vì \(SH \bot \left( {ABCD} \right)\)\( \Rightarrow SH \bot BC\)
Gọi \(M\) là trung điểm của \(BC\), ta có \(BC \bot HM,\,BC \bot SH \Rightarrow BC \bot \left( {SHM} \right) \Rightarrow BC \bot SM\).
Do đó góc giữa mặt phẳng \(\left( {SBC} \right)\) và mặt phẳng đáy là \(\widehat {SMH} = 30^\circ \).
Xét \(\Delta SHM\) vuông tại \(H,\) có \[\tan 30^\circ = \frac{{SH}}{{HM}} \Rightarrow HM = \frac{{SH}}{{\tan 30^\circ }} = 3a\].
Khi đó: \({V_{S.ABCD}} = \frac{1}{3}SH.AD.HM = \frac{1}{3}a\sqrt 3 .2a.3a = 2\sqrt 3 {a^3}\).
Lời giải
Hướng dẫn giải
Gọi \(n\), \(\left( {\,n \in {\mathbb{N}^*}} \right)\)là số năm cần tìm.
Số tiền cả gốc lẫn lãi của Nam sau \(n\) năm là \(65.{\left( {1 + 6,5\% } \right)^n}\) triệu đồng.
Ta có: \(65.{\left( {1 + 6,5\% } \right)^n} \approx 83\)\( \Rightarrow \,n = 4\).
Vậy sau 4 năm Nam có thể mua được một chiếc xe máy với giá 83 triệu đồng.
Câu 3
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
