Câu hỏi:

22/12/2025 5 Lưu

Cho hình chóp S.ABC có đáy là tam giác ABC vuông tại B, SA vuông góc với đáy, \(SA = a\sqrt 2 \), \(AB = a\), \(BC = 2a\). Chứng minh tam giác \(\Delta SBC\) vuông.

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Hướng dẫn giải

Cho hình chóp S.ABC có đáy là tam giác ABC vuông tại B, SA vuông góc với đáy, SA = a căn bậc hai 2 , AB = a, BC = 2a. Chứng minh tam giác tam giác SBC vuông. (ảnh 1)

Ta có \(SA \bot \left( {ABC} \right) \Rightarrow SA \bot BC\)

Mà \(AB \bot BC\) và trong \(\left( {SAB} \right)\): \(SA \cap AB = A\) nên \(BC \bot \left( {SAB} \right)\).

\( \Rightarrow BC \bot SB\).

Vậy tam giác \(SBC\) vuông tại \(B\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

A. \(SA \bot \left( {ABCD} \right)\).
B. \(SO \bot \left( {ABCD} \right)\).
C. \(SC \bot \left( {ABCD} \right)\).
D. \(SB \bot \left( {ABCD} \right)\).

Lời giải

Hướng dẫn giải

Đáp án đúng là: B

Cho hình chóp S.ABCD có đáy là hình bình hành tâm O, SA = SC,SB = SD. Trong các khẳng định sau khẳng định nào đúng? (ảnh 1)

Vì \(O\) là tâm của hình bình hành \(ABCD\) nên \(O\) là trung điểm của \(AC,BD\).

Vì \(SA = SC\) nên \(\Delta SAC\) cân tại \(S\), \(O\) là trung điểm của \(AC\) nên \(SO \bot AC\) (1).

Tương tự \(SO \bot BD\)(2).

Từ (1) và (2), suy ra \(SO \bot \left( {ABCD} \right)\).

Lời giải

Hướng dẫn giải

a) \(y' = {\left( {{{({x^2} - 2)}^2}} \right)^\prime } = 2({x^2} - 2).{\left( {{x^2} - 2} \right)^\prime } = 2({x^2} - 2).2x = 4x({x^2} - 2).\)

b) \(y' = {\left( {\frac{{x - 3}}{{x + 1}}} \right)^\prime } = \frac{{{{\left( {x - 3} \right)}^\prime }.\left( {x + 1} \right) - \left( {x - 3} \right).{{\left( {x + 1} \right)}^\prime }}}{{{{\left( {x + 1} \right)}^2}}} = \frac{4}{{{{\left( {x + 1} \right)}^2}}}\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

A. \(f'\left( x \right) = \frac{3}{2}\left( {\sqrt x  - \frac{1}{{\sqrt x }} - \frac{1}{{x\sqrt x }} + \frac{1}{{{x^2}\sqrt x }}} \right)\).        
B. \(f'\left( x \right) = \frac{3}{2}\left( {\sqrt x  + \frac{1}{{\sqrt x }} + \frac{1}{{x\sqrt x }} + \frac{1}{{{x^2}\sqrt x }}} \right)\).
C. \(f'\left( x \right) = \frac{3}{2}\left( { - \sqrt x  + \frac{1}{{\sqrt x }} + \frac{1}{{x\sqrt x }} - \frac{1}{{{x^2}\sqrt x }}} \right)\).
D. \(f'\left( x \right) = x\sqrt x  - 3\sqrt x  + \frac{3}{{\sqrt x }} - \frac{1}{{x\sqrt x }}\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP