Một xạ thủ bắn lần lượt hai viên đạn vào bia. Xác suất bắn không trúng đích của viên thứ nhất và viên thứ hai lần lượt là \(0,2\) và \(0,3\). Biết rằng kết quả các lần bắn độc lập với nhau. Tính xác suất của biến cố: “Có ít nhất một lần bắn trúng đích”.
Quảng cáo
Trả lời:
Hướng dẫn giải
Gọi biến cố \(D\): “Có ít nhất một lần bắn trúng đích ”.
biến cố \(\overline D \): “Cả hai lần bắn đều không trúng đích”.
\( \Rightarrow P\left( {\overline D } \right) = 0,2.0,3 = 0,06.\)
\( \Rightarrow P\left( D \right) = 1 - P\left( {\overline D } \right) = 0,94.\)
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- Trọng tâm Sử, Địa, GD KTPL 11 cho cả 3 bộ Kết nối, Chân trời, Cánh diều VietJack - Sách 2025 ( 38.000₫ )
- Trọng tâm Hóa học 11 dùng cho cả 3 bộ sách Kết nối, Cánh diều, Chân trời sáng tạo VietJack - Sách 2025 ( 58.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1
Lời giải
Hướng dẫn giải
Đáp án đúng là: B
Vì \(O\) là tâm của hình bình hành \(ABCD\) nên \(O\) là trung điểm của \(AC,BD\).
Vì \(SA = SC\) nên \(\Delta SAC\) cân tại \(S\), \(O\) là trung điểm của \(AC\) nên \(SO \bot AC\) (1).
Tương tự \(SO \bot BD\)(2).
Từ (1) và (2), suy ra \(SO \bot \left( {ABCD} \right)\).
Lời giải
Hướng dẫn giải
a) \(y' = {\left( {{{({x^2} - 2)}^2}} \right)^\prime } = 2({x^2} - 2).{\left( {{x^2} - 2} \right)^\prime } = 2({x^2} - 2).2x = 4x({x^2} - 2).\)
b) \(y' = {\left( {\frac{{x - 3}}{{x + 1}}} \right)^\prime } = \frac{{{{\left( {x - 3} \right)}^\prime }.\left( {x + 1} \right) - \left( {x - 3} \right).{{\left( {x + 1} \right)}^\prime }}}{{{{\left( {x + 1} \right)}^2}}} = \frac{4}{{{{\left( {x + 1} \right)}^2}}}\).
Câu 3
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 4
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.