Cho đường tròn tâm \(O\) đường kính \(AB = 2R\). Gọi \(H\) là trung điểm của \(OA\). Vẽ dây \(CD\) vuông góc với \(AB\) tại \(H\). Gọi \(M\) là một điểm di động trên cung nhỏ \(BC\) (\(M\) không trùng với \(B\) và \(C\)), \(AM\) cắt \(CD\) tại \(I\).
1) Tính độ dài các đoạn thẳng \(AC,\,\,BC,\,\,CH\) theo \(R\).
2) Chứng minh \(AD\) là tiếp tuyến của đường tròn ngoại tiếp tam giác \(IDM\).
3) Tìm vị trí điểm \(M\) trên cung nhỏ \(BC\) sao cho \(MB + MC + MD\) đạt giá trị lớn nhất.
Cho đường tròn tâm \(O\) đường kính \(AB = 2R\). Gọi \(H\) là trung điểm của \(OA\). Vẽ dây \(CD\) vuông góc với \(AB\) tại \(H\). Gọi \(M\) là một điểm di động trên cung nhỏ \(BC\) (\(M\) không trùng với \(B\) và \(C\)), \(AM\) cắt \(CD\) tại \(I\).
1) Tính độ dài các đoạn thẳng \(AC,\,\,BC,\,\,CH\) theo \(R\).
2) Chứng minh \(AD\) là tiếp tuyến của đường tròn ngoại tiếp tam giác \(IDM\).
3) Tìm vị trí điểm \(M\) trên cung nhỏ \(BC\) sao cho \(MB + MC + MD\) đạt giá trị lớn nhất.
Quảng cáo
Trả lời:

|
Vì \[H\] là trung điểm của \[OA\] nên \(AH = \frac{{OA}}{2} = \frac{R}{2} \cdot \) Ta có \[\widehat {ACB} = {90^0}\] (góc nội tiếp chắn nửa đường tròn). Xét tam giác \(ABC\) vuông tại \(C\) có đường cao \(CH\): \(A{C^2} = AB.AH = 2R.\frac{R}{2} = {R^2} \Rightarrow AC = R\). |
|
\(B{C^2} = A{B^2} - A{C^2} = 4{R^2} - {R^2} = 3{R^2} \Rightarrow BC = R\sqrt 3 .\) |
|
\(CH.AB = AC.BC \Rightarrow CH = \frac{{AC.BC}}{{AB}} = \frac{{R.R\sqrt 3 }}{{2R}} = \frac{{R\sqrt 3 }}{2} \cdot \) |
|
Cách 1: Tam giác \(ABD\) vuông tại \(D\) đường cao \(DH\) ta có \(A{D^2} = AH.AB.\) \[\Delta AIH\] và \[\Delta ABM\] có góc \[A\] chung và \[\widehat {AHI} = \widehat {AMB}\left( { = {{90}^0}} \right)\].
|
|
|
Do đó \(A{D^2} = AI.AM \Rightarrow \frac{{AD}}{{AM}} = \frac{{AI}}{{AD}} \cdot \) |
|
|
\[\Delta ADI\]
Suy ra \(\Delta ADI\) \(\Delta AMD\) (c.g.c). |
|
|
Vậy \(\widehat {ADI} = \widehat {AMD}\). Do đó \(AD\) là tiếp tuyến của đường tròn ngoại tiếp \(\Delta IDM\). |
|
|
Cách 2: \[OA\] là đường trung trực của \[CD\] nên \[AC = AD\]. |
|
|
Tam giác \[ACD\] cân tại \[A\] nên \[\widehat {ACD} = \widehat {ADI}\]. |
|
|
Mặt khác \[\widehat {ACD} = \widehat {AMD}\] (cùng chắn cung \[AD\]). |
|
|
Vậy \(\widehat {ADI} = \widehat {AMD}\). Do đó \(AD\) là tiếp tuyến của đường tròn ngoại tiếp \(\Delta IDM\). |
|
|
Tìm vị trí điểm \(M\) trên cung nhỏ \(BC\) sao cho \(MB + MC + MD\) đạt giá trị lớn nhất. |
|
![]() Ta có \(CD = 2.CH = 2.\frac{{R\sqrt 3 }}{2} = R\sqrt 3 \). |
|
|
Mặt khác \(\Delta BCD\) cân tại \(B\) nên \(BD = BC = R\sqrt 3 \). Vậy \(\Delta BCD\) là tam giác đều. Trên đoạn \[MD\] lấy điểm \[K\] sao cho \[MK = MB\]. \(\Delta MBK\) cân tại \(M\) có \(\widehat {BMK} = \widehat {BCD} = {60^0}\) nên là tam giác đều. |
|
|
Ta có \[\widehat {CBM} + \widehat {CBK} = {60^0},\,\,\widehat {DBK} + \widehat {CBK} = {60^0}\]. Dẫn đến \[\widehat {CBM} = \widehat {DBK}\]. Xét \(\Delta CBM\) và \[\Delta DBK\] có: \(CB = DB,\,\widehat {\,CBM} = \widehat {DBK},\,\,BM = BK\). Do đó \(\Delta CBM = \Delta DBK \Rightarrow MC = KD\). Vậy \(MD = MK + KD = MB + MC\). |
|
|
Ta có \(MB + MC + MD = 2MD \le 4R\). Vậy \(MB + MC + MD\) đạt giá trị lớn nhất khi \(MD\) là đường kính của đường tròn \(\left( O \right)\). Do đó \(M\) là điểm chính giữa của cung nhỏ \(BC\). |
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Chia hình vuông đã cho thành 49 hình vuông nhỏ bằng nhau, mỗi hình vuông có cạnh bằng \[\frac{1}{7}\].
Lời giải
|
1) Cách 1: Viết lại phương trình thành \[\left( {x - 2} \right)\left( {x + 6} \right)\left( {x + 1} \right)\left( {x + 3} \right) + 56 = 0 \Leftrightarrow \left( {{x^2} + 4x - 12} \right)\left( {{x^2} + 4x + 3} \right) + 56 = 0\]. |
|
Đặt \[t = {x^2} + 4x - 12\], ta có \[t\left( {t + 15} \right) + 56 = 0 \Leftrightarrow {t^2} + 15t + 56 = 0\]. Ta có \(\Delta = {15^2} - 4.1.56 = 1\) Do đó phương trình trên có nghiệm \[\left[ \begin{array}{l}t = - 7\\t = - 8\end{array} \right.\]. |
|
Với \[t = - 7\] thì \[{x^2} + 4x - 12 = - 7 \Leftrightarrow {x^2} + 4x - 5 = 0\]. Giải tương tự trên, ta được \[\left[ \begin{array}{l}x = 1\\x = - 5\end{array} \right.\]. |
|
Với \[t = - 8\] thì \[{x^2} + 4x - 12 = - 8 \Leftrightarrow {x^2} + 4x - 4 = 0\]. Giải tương tự trên, ta được \[\left[ \begin{array}{l}x = - 2 + 2\sqrt 2 \\x = - 2 - 2\sqrt 2 \end{array} \right.\]. Tập nghiệm của phương trình là \[S = \left\{ {1;\, - 5;\, - 2 + 2\sqrt 2 ;\, - 2 - 2\sqrt 2 } \right\}\]. |
|
Cách 2: Khai triển và thu gọn, ta được \[{x^4} + 8{x^3} + 7{x^2} - 36x + 20 = 0\]. |
|
\[\begin{array}{l} \Leftrightarrow {x^4} - {x^3} + 9{x^3} - 9{x^2} + 16{x^2} - 16x - 20x + 20 = 0\\ \Leftrightarrow \left( {x - 1} \right)\left( {{x^3} + 9{x^2} + 16x - 20} \right) = 0\\ \Leftrightarrow \left( {x - 1} \right)\left( {{x^3} + 5{x^2} + 4{x^2} + 20x - 4x - 20} \right) = 0\\ \Leftrightarrow \left( {x - 1} \right)\left( {x + 5} \right)\left( {{x^2} + 4x - 4} \right) = 0\end{array}\]. |
|
\[ \Leftrightarrow \left[ \begin{array}{l}x - 1 = 0\\x + 5 = 0\\{x^2} + 4x - 4 = 0\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}x = 1\\x = - 5\\{\left( {x + 2} \right)^2} = 8\end{array} \right.\]. |
|
Tập nghiệm của phương trình là \[S = \left\{ {1;\, - 5;\, - 2 + 2\sqrt 2 ;\, - 2 - 2\sqrt 2 } \right\}\]. |
|
2) Cách 1: Đặt \[\left\{ \begin{array}{l}S = x + y\\P = xy\end{array} \right.\]. Hệ phương trình trở thành \[\left\{ \begin{array}{l}{S^2} - 2P = 5\\S + P = 5\end{array} \right.\]. |
|
\[ \Leftrightarrow \left\{ \begin{array}{l}{S^2} - 2\left( {5 - S} \right) = 5\\P = 5 - S\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}{S^2} + 2S - 15 = 0 & \left( * \right)\\P = 5 - S\end{array} \right.\]. Phương trình (*) có \(\Delta ' = {1^2} + 1.15 = 16\) nên \[\left[ \begin{array}{l}S = - 5,\,\,P = 10\\S = 3,\,\,P = 2\end{array} \right.\]. |
|
Với \[\left\{ \begin{array}{l}S = - 5\\P = 10\end{array} \right.\] thì \[x,\,\,y\] là hai nghiệm của phương trình \[{X^2} + 5X + 10 = 0\] (phương trình vô nghiệm). |
|
Với \[\left\{ \begin{array}{l}S = 3\\P = 2\end{array} \right.\] thì \[x,\,\,y\] là hai nghiệm của phương trình \[{X^2} - 3X + 2 = 0 \Leftrightarrow \left[ \begin{array}{l}X = 1\\X = 2\end{array} \right.\] (vì \(a + b + c = 1 - 3 + 2 = 0\)). Vậy hệ phương trình có hai nghiệm là \[\left( {1;\,\,2} \right)\] và \[\left( {2;\,\,1} \right)\]. |
|
Cách 2: Từ phương trình sau suy ra \[x \ne - 1,y \ne - 1\] và \[y = \frac{{5 - x}}{{x + 1}}\]. Thế vào phương trình đầu, ta được \[{x^2} + {\left( {\frac{{5 - x}}{{x + 1}}} \right)^2} = 5\]. |
|
\[\begin{array}{l} \Leftrightarrow {x^2}{\left( {x + 1} \right)^2} + {\left( {5 - x} \right)^2} = 5{\left( {x + 1} \right)^2}\\ \Leftrightarrow {x^4} + 2{x^3} - 3{x^2} - 20x + 20 = 0\end{array}\]. |
|
\[\begin{array}{l} \Leftrightarrow \left( {{x^4} - 2{x^3} + 2{x^2}} \right) + \left( {5{x^3} - 15{x^2} + 10x} \right) + \left( {10{x^2} - 30x + 20} \right) = 0\\ \Leftrightarrow \left( {{x^2} - 3x + 2} \right)\left( {{x^2} + 5x + 10} \right) = 0\end{array}\]. |
|
\[ \Leftrightarrow {x^2} - 3x + 2 = 0\] (vì với mọi \[x\]). \[ \Leftrightarrow \left[ \begin{array}{l}x = 1 \Rightarrow y = 2\\x = 2 \Rightarrow y = 1\end{array} \right.\]. |
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
