Cho biểu thức \(P = \left( {\frac{{\sqrt x }}{{\sqrt x - 2}} - \frac{4}{{x - 2\sqrt x }}} \right):\frac{{\sqrt x + 2}}{2}\) với \(x > 0,x \ne 4\).
a) Rút gọn biểu thức \(P\).
b) Tìm tất cả các giá trị của \(x\) để \[P \ge 1\].
Cho biểu thức \(P = \left( {\frac{{\sqrt x }}{{\sqrt x - 2}} - \frac{4}{{x - 2\sqrt x }}} \right):\frac{{\sqrt x + 2}}{2}\) với \(x > 0,x \ne 4\).
a) Rút gọn biểu thức \(P\).
b) Tìm tất cả các giá trị của \(x\) để \[P \ge 1\].
Quảng cáo
Trả lời:
a) Ta có: \(P = \left( {\frac{{\sqrt x }}{{\sqrt x - 2}} - \frac{4}{{\sqrt x .\left( {\sqrt x - 2} \right)}}} \right).\frac{2}{{\sqrt x + 2}}\)
\( = \frac{{x - 4}}{{\sqrt x .\left( {\sqrt x - 2} \right)}}.\frac{2}{{\sqrt x + 2}}\)
\( = \frac{{2\left( {x - 4} \right)}}{{\sqrt x .(x - 4)}}\)
\( = \frac{2}{{\sqrt x }}\)
b) Tìm tất cả các giá trị của \(x\) để \[P \ge 1\].
\[P \ge 1 \Rightarrow \frac{2}{{\sqrt x }} \ge 1\]
\[ \Rightarrow \sqrt x \le 2\]
\[ \Rightarrow x \le 4\]
Do \(x > 0,x \ne 4\) nên \[0 < x < 4\]
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
a) Chứng minh rằng tứ giác \[AIJE\] nội tiếp đường tròn.
Vì \[IJ{\rm{//}}BC\] nên \(IJ \bot AI\).
Ta có \(\widehat {AIJ} = {90^{\rm{o}}}\)
\(\widehat {AEJ} = {90^{\rm{o}}}\)
Suy ra \(\widehat {AIJ} + \widehat {AEJ} = {180^{\rm{o}}}\). Vậy tứ giác \(AIJE\) nội tiếp đường tròn.
b) Chứng minh rằng \(D\) là trung điểm \(BM\).
Tứ giác \(AEHF\) có \(\widehat {AFH} = \widehat {AEH} = {90^{\rm{o}}}\), suy ra \(AEHF\) nội tiếp đường tròn.
\( \Rightarrow \widehat {FAH} = \widehat {FEH}\) (cùng chắn cung ) (1)
Tứ giác \(AIJE\) nội tiếp đường tròn, suy ra \(\widehat {IAJ} = \widehat {IEJ}\) (cùng chắn cung ) (2)
Từ (1) và (2) \( \Rightarrow \widehat {FAH} = \widehat {IAJ}\)\( \Rightarrow AD\) là đường phân giác góc \(\widehat {BAM}\).
Mà \(AD\) là đường cao tam giác \(BAM\)
\( \Rightarrow \Delta BAM\) cân tại \(A\)\( \Rightarrow D\) là trung điểm \(BM\)
c) Gọi \(L\) là giao điểm của hai đường thẳng \(EF\) và \(BC\). Chứng minh rằng \(\widehat {FLB} = \widehat {CAM}\).

Tứ giác \(AFDC\) nội tiếp đường tròn nên \(\widehat {FAD} = \widehat {FCD}\)
Mà \(\widehat {FAD} = \widehat {DAM}\)\( \Rightarrow \widehat {HAM} = \widehat {HCM}\)
\( \Rightarrow AHMC\) nội tiếp đường tròn\( \Rightarrow \widehat {CAM} = \widehat {MHC}\) (3)
\(\Delta HBM\) cân tại \(H\) nên \(\widehat {HMB} = \widehat {HBM}\)
Tứ giác \(BFEC\) nội tiếp đường tròn nên \(\widehat {EFC} = \widehat {EBC}\)
\( \Rightarrow LFHM\) nội tiếp đường tròn.
\( \Rightarrow \widehat {FLM} = \widehat {MHC}\) (góc ngoài của tứ giác nội tiếp) (4)
Từ (3), (4) \( \Rightarrow \widehat {FLB} = \widehat {CAM}\)
Lời giải
a) Giải phương trình \({x^4} + 5{x^2} - 6 = 0\).
Đặt \(t = {x^2}\) \(\left( {t \ge 0} \right)\)
Ta được phương trình \({t^2} + 5t - 6 = 0\)
\( \Rightarrow \left[ \begin{array}{l}t = 1\\t = - 6{\rm{ (loai)}}\end{array} \right.\)
Với \(t = 1 \Rightarrow {x^2} = 1 \Rightarrow x = \pm 1\)
Vậy phương trình có nghiệm \(x = \pm 1\).
b) Giải hệ phương trình \(\left\{ \begin{array}{l}x\left( {3y + 1} \right) - y = 3\\{x^2} + {y^2} + xy = 3\end{array} \right.\).
\(\left\{ \begin{array}{l}x\left( {3y + 1} \right) - y = 3\\{x^2} + {y^2} + xy = 3\end{array} \right. \Rightarrow \left\{ \begin{array}{l}x - y + 3xy = 3\\{\left( {x - y} \right)^2} + 3xy = 3\end{array} \right.\)
Đặt \(\left\{ \begin{array}{l}u = x - y\\v = xy\end{array} \right.\)
Ta có hệ phương trình \[\left\{ \begin{array}{l}u + 3v = 3\\{u^2} + 3v = 3\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}u + 3v = 3\\{u^2} - u = 0\end{array} \right. \Rightarrow \left\{ \begin{array}{l}v = \frac{{3 - u}}{3}\\\left[ \begin{array}{l}u = 0\\u = 1\end{array} \right.\end{array} \right. \Rightarrow \left[ \begin{array}{l}\left\{ \begin{array}{l}u = 0\\v = 1\end{array} \right.\\\left\{ \begin{array}{l}u = 1\\v = \frac{2}{3}\end{array} \right.\end{array} \right.\]
Với \(\left\{ \begin{array}{l}u = 0\\v = 1\end{array} \right. \Rightarrow \left\{ \begin{array}{l}x - y = 0\\xy = 1\end{array} \right. \Rightarrow \left[ \begin{array}{l}x = y = 1\\x = y = - 1\end{array} \right.\).
Với \(\left\{ \begin{array}{l}u = 1\\v = \frac{2}{3}\end{array} \right. \Rightarrow \left\{ \begin{array}{l}x - y = 1\\xy = \frac{2}{3}\end{array} \right.\) \( \Rightarrow \)hệ có nghiệm là \(\left\{ \begin{array}{l}x = \frac{{3 + \sqrt {33} }}{6}\\y = \frac{{ - 3 + \sqrt {33} }}{6}\end{array} \right.\) hoặc \(\left\{ \begin{array}{l}x = \frac{{3 - \sqrt {33} }}{6}\\y = \frac{{ - 3 - \sqrt {33} }}{6}\end{array} \right.\).
Vậy hệ phương trình có 4 nghiệm \(\left( {1;1} \right),\,\,\,\left( { - 1; - 1} \right),\,\,\)\(\left( {\frac{{3 + \sqrt {33} }}{6};\frac{{ - 3 + \sqrt {33} }}{6}} \right),\,\left( {\frac{{3 - \sqrt {33} }}{6};\frac{{ - 3 - \sqrt {33} }}{6}} \right)\).
c) Cho phương trình \({x^2} + 2mx + {m^2} - 2m + 4 = 0\) (\(m\)là tham số). Tìm tất cả các giá trị của tham số \(m\) để phương trình có hai nghiệm phân biệt \({x_1},\,{\rm{ }}{x_2}\) thỏa \(\left( {{x_1} + m} \right)\left( {{x_2} + m} \right) = {m^2} - 6m + 7\).
Phương trình có hai nghiệm phân biệt \({x_1},\,{\rm{ }}{x_2} \Leftrightarrow \Delta ' = 2m - 4 > 0 \Leftrightarrow m > 2\).
Theo hệ thức Vi-et \(\left\{ \begin{array}{l}S = {x_1} + {x_2} = - \frac{b}{a} = - 2m\\P = {x_1}{x_2} = \frac{c}{a} = {m^2} - 2m + 4\end{array} \right.\)
Ta có \(\left( {{x_1} + m} \right)\left( {{x_2} + m} \right) = {m^2} - 6m + 7 \Leftrightarrow {x_1}{x_2} + m\left( {{x_1} + {x_1}} \right) + {m^2} = {m^2} - 6m + 7\)
\( \Leftrightarrow {m^2} - 4m + 3 = 0 \Rightarrow \left[ \begin{array}{l}m = 1\\m = 3\end{array} \right.\)
So với điều kiện ta có \(m = 3\) là giá trị cần tìm.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.